AN ELEMENTARY PROOF OF 2-CATEGORICAL PASTING

NICHOLAS CECIL

ABSTRACT. This note provides an elementary proof that any pasting diagram in a
2-category has a uniquely defined 2-cell composite.

1. Introduction

The 2-categorical pasting theorem allows for a diagrammatic calculus in 2-category theory
analogous to the use of commutative diagrams in 1-category theory.

In ordinary 1-category theory, diagrams allow for a visual representation of data. One
of the most basic observations about a diagram is that it commutes. Making such a
judgment involves considering the diagram, e.g.

a > d

extracting strings of composable morphisms, e.g.

f g h
a > b > C > d

and considering their composite. Since composition in a category is associative, there is
no need to fret about how the composite is obtained.

In a 2-category, the role of strings of composable morphisms is played by pasting dia-
grams and the basic judgment is whether two pasting diagrams have equal composite.
For instance, the following are two pasting diagrams

a—>a

\ﬂ ﬂ ) fg%df 0

)

The equality of their composites is part of the condition that f is left adjoint to u with
unit 7 and counit e.
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The composite of a pasting diagram is a 2-morphism. To extract it, one breaks the
pasting diagram into simpler pieces, e.g.

a —2 g a a
S ST IN
u f u €
! / N f "
b b and b )

finds 2-morphisms composites for these by whiskering, e.g. obtaining f *n and € * f, and
then composing these to obtain the overall composite 2-morphism, e.g. (e x f) o (f *xn).

There are two problems with this story.

(P1) One must actually define pasting diagram. The above discussion, at best, describes
a pasting diagram as a labeled “picture that looks like this” which is not precise.
Related to this is the problem of obtaining a precise definition of the composite of a
pasting diagram. In the above, we refer to “simple pieces,” but this must be made
precise.

(P2) For a complex pasting diagram there may be many ways to obtain a decomposition
into simple pieces. It must be shown that different decompositions lead to the
same composite. The available associativity-like axioms for 2-categories do not
immediately resolve this problem.

A solution to these problems first appeared in [Pow90]. A detailed textbook treatment
in [JY21] follows similar ideas. To resolve (P1), Power defined a pasting diagram to be a
directed graph, equipped with an explicit planar embedding, satisfying various properties,
and equipped with certain labels. For instance, the bounded faces of the plane graph are
labeled with 2-morphisms. Power used the planar structure and assumed properties to
define the composite of such a pasting diagram and proved that it is unique, resolving (P2).

This treatment of pasting diagrams resolves the problems outlined above quite cleanly. A
pasting diagram is defined to be - literally - a picture with specific well-defined properties
in such a way that any picture of a pasting diagram is clearly a pasting diagram. The
present author is interested in two features of this account.

(R1) The significant features of a pasting diagram, thought of as “a picture that looks like
this,” is a finite amount of combinatorial data. It should be a very simple object.
However, a graph equipped with an explicit plane embedding is far from simple. It
encodes a great deal of information which is not necessary for a pasting diagram
to carry. In fact, a pasting diagram in the sense of Power is not really a plane
graph. Rather, it should be thought of as an isotopy class of plane graphs. Still, an
equivalence class of plane embeddings is not a simple object.
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(R2) Working with pasting diagrams as plane graphs requires non-trivial topology. For
instance, the Jordan Curve Theorem is needed to prove that the faces of a plane
graph exist in general. A foundational result in 2-category theory relying on non-
trivial topology is an odd state of affairs.

The above motivated the author to find a definition of pasting diagram with the following
goals in mind

(G1) A pasting diagram must consist of a reasonably small amount of combinatorial data.

(G2) Pictures as in (1) must be unambiguously recognized as notation for pasting dia-
grams.

(G3) Pasting diagrams must have a unique 2-morphism composite.

(G4) Any pasting diagram in the sense of [JY21] must correspond to a pasting diagram
in this new sense and have the same composite.

In this paper, a pasting diagram will be defined using computads, introduced in [Str76].
Any 2-category C has an underlying computad UC. Any computad I' generates a free
category FT'. These operations fit into an adjunction

L
2cat 1 cmptd
T

where 2cat is the category of small 2-categories and cmptd is the category of computads.
Certain nice computads equipped with data will be called pasting schemes. Given a
2-category C and a computad I', it is an easy combinatorial task to define a computad
morphism I' — UC or equivalently a 2-functor ® : FT' — C. When I is a pasting scheme,
we will call such a 2-functor ® a pasting diagram of shape I' in C. The extra data
carried by the pasting scheme I" specifies two distinguished morphisms p, g € FT such that
Hompr(p, q) = {ar} is a singleton. The composite 2-morphism of the pasting diagram
® is defined to be ®(ar).

In Section 2, we recall the necessary facts about computads from [Str76]. In Section
3, we introduce the conditions on computads which define pasting schemes, meeting goals
(G1) and (G2). We prove that certain sets of 2-morphisms in the free 2-category gen-
erated by a pasting scheme are singletons. This, along with the definition of composite,
obtains goal (G3). In Section 4, we compare our pasting diagrams with those in [JY21],
meeting goal (G4).

1.1. REMARK. There are other combinatorial approaches to categorical pasting in the
literature; see the torsion free complexes of [For22] and the other models discussed there.
These have been used to address pasting theorems in the (0o, n)-categorical context, c.f.
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[Cam23]. As far as the author is aware, none of these address the specific goal of this
paper of providing an elementary and combinatorial proof of the 2-categorical pasting
theorem. In [Joh89] - which shares our terminology for pasting schemes and diagrams
- Observation 15 (following from Theorem 13) offers a pasting theorem for w-categories.
However, [For22| points out errors in Theorem 13 which throws doubt on the pasting
theorem. Moreover, this whole framework is designed for the w-categorical context and
is more complicated and abstract than our treatment. In [Joh89], Johnson writes that
he intends to produce a version of that paper purely in the 2-categorical context. To the
author’s knowledge, this did not occur.

2. Computads

In this section, we recall the necessary theory of computads from [Str76]. Throughout,
graph means directed graph, possibly with multiple-edges and loops. In this spirit, path
means directed path. Cycle means directed cycle. Etc.

2.1. NOTATION. Paths are written in composition order. That is, the path

f g
° > @ )

is written (g, f). Concatenation of paths is written as x. Thus, (g, f) = g* f.

2.2. DEFINITION. A graph is trim when the source and target maps are jointly surjective;
that is, each vertex must be the source or target of some edge.

2.3. DEFINITION. A computad I" consists of a graph Iy and for each vertex a,b of T'y
a trim graph T'(a,b) whose vertices are paths from a to b in I'g. The edges in I'(a,b) are
referred to as 2-edges.

A morphism of computads F : I' — 1" is a graph morphism F : T — T further
equipped with graph morphisms F : I'(a,b) — I"(Fa, F'b) for each pair of vertices a,b in
Lo. We require that the action of F': T'(a,b) — I''(Fa, F'b) on vertices is induced from the
action of F': I'y — T'y on paths. The resulting category of computads and morphisms is
denoted cmptd.

2.4. NOTATION. We use s and t to denote the source and target operations on both the
underlying graph of a computad and on the graphs whose vertices are paths. Thus, if I' is
a computad and e € Ty is an edge or path, then s(e) is the source vertex of e in Uy. If «
is a 2-edge in T'(a,b) then s(«) is its source, a path in Ty from a to b.

2.5. ExXAMPLE. Consider a picture of the form

CL—>CL

N T,
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which is a pasting scheme of the “picture like this” sort. This can be seen as a drawing
of computad I' whose underlying graph I'y is

and whose only non-empty graphs of the form I'(x,y) are I'(a,a’) and I'(b,0’). These are
the graphs

S—>(U,f) (flvu)—>t
This sort of computad is how we will achieve goal (G2).

2.6. EXAMPLE. Consider a 2-category C. This generates an underlying computad
UC as follows. The graph (UC)g is the graph underlying the 1-category underlying C.
Its vertices are the objects of C and the edges are the morphisms. Given paths f =
(fus faz1s-s fo) and g = (gm, Gm-1,---,90) in (UC)g, a 2-edge in (UC)(f,g) is exactly a
2-morphism f, o---0 fy = gno---0gg in C. Observe that U extends to a functor
U : 2cat — cmptd.

Next, we will define a free 2-category FI' generated by a computad I'. This construction
will extend to a functor F' : cmptd — 2cat left adjoint to U.

2.7. CONSTRUCTION. Fix a computad I and wvertices a,b € I'y. We define the graph
I'(a,b) as follows.

o A vertex is a path from a to b in I'y.

e An edge from path p to path q is a triple (g,«, f). Here f,g are paths in Ty and
a € T(t(f),s(g)) and gxs(a)* f =p and gxt(a)* f = q. The data can be visualized

as
PR

a—1 e ﬂa o 2 4
~—_

We define another graph T?(a,b)
o A vertex is a path from a to b in I'y.

e An edge from path p to path q is a tuple (h,(,qg,c, f). Here f, g, h are paths in Ty
and o € T'(t(f),s(g)) and 5 € T'(t(g),s(h)) and h * s(B) * g * s(a) x f = p and
hxs(f)*g=*t(a)* f=q. The data can be visualized as

f s g A h

oo e e e
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Write ' : grph — cat for the free category functor. Define functors
@
2 —_— 1
FT%(a,b) . FT''(a,b)

which are identity on objects and on edges are induced by
O(h, B, 9,0, ) = (h, B, g t() x f) o (hx s(B) * g, v, )
and

U(h, 3,9, f) = (hxt(B) x g, a, f) o (h, B, g * 5(a) * [).
Define FT'(a,b) to be category obtained as the coequalizer
>

FT?(a,b) FT'(a,b) ——— FT(a,b)
v

The objects are the same as in FT(a,b) and the morphisms are equivalence classes gen-
erated by the relation ®(f) ~ U(f) and composition for any morphism f € I'%(a,b).

2.8. DEFINITION. Fix a computad I'. We define a 2-category FT as follows.
e The objects are the vertices of I'y.
e Ifa,b are objects, the hom-category from a to b is FT'(a,b).

e Ifa,b,c are objects, the composition functor FT'(b,c) x FT'(a,b) — FT'(a,c) is con-
catenation of paths on objects and is given on morphisms by

((k7/87h>7(g7a7f)) Hé(k7/87h*g7a{7f)'

One checks that this is a well defined 2-category. Moreover, the construction extends to a
functor F' : cmptd — 2cat.

2.9. THEOREM. [Str76] The functor F : cmmptd — 2cat is left adjoint to U : 2cat —
cmptd.

2.10. REMARK. Consider the computad I" from Example 2.5 and some 2-category C. The
utility of Theorem 2.9 is that a 2-functor FT' — C is the same as a computad morphism
I' = UC. This is specified by

e objects a,b,a’, v in C,

e morphisms f:a —bands:a—ad andu:b—ad andt:b— b and f':d' — V' in
C, and

e 2-morphisms n: s = ux f and e: f'*u =t in C.
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This is the sort of finite amount of data specifying a I' shaped pasting diagram in C
which satisfies goal (G1). Inspection of I' reveals that there is exactly one 2-morphism
(f',s) = (t, f) in FT. Call this ar. Now, given a functor ® : FT' — C, one obtains ®(ar)
exactly as one obtains the composite of the pasting diagram from Section 1. The “simple
pieces” can be precisely described as the image under ¢ of the morphisms generating the
2-morphisms from (f’,s) to (t, f).

3. Pasting Diagrams

In this section, we define pasting scheme and pasting diagram. A pasting diagram is
essentially a computad I' equipped with distinguished objects a,b and paths p, ¢ from a
to b in I'g such that Hompgr(p, ¢) is a singleton.

3.1. DEFINITION. Fix a computad I'.

o We say that I' is acyclic when 'y is.

o We say that ' is planar when for any 2-edge «, the source and target paths s(c)
and t(a) are disjoint. Moreover, each edge appears in at most one s(«) and at most
one t(a) with o a 2-edge.

o We say that T’ is non-trivial when no path appearing as a vertex in any I'(a,b) is
empty.

o We say I' is 2-linear between vertices a,b € Ty when given a path (¢n, ..., 1) in
I'Y(a,b) if e is an edge in s(¢;) but not t(¢;) for some 1 < i < n then e is not in
any t(¢;) for j > 1.

We say that T' is stmple when it is acyclic, planar, and non-trivial.

3.2. LEMMA. If T is a computad which is 2-linear between vertices a and b, then I''(a,b)
18 acyclic.

3.3. NOTATION. Let I' be an acyclic computad. If w is a path in I'g and o is a 2-edge of
[ with s(a) C w, define a,w to be that path in Ty obtained in the following way:

o Write w = w" * s(a) x w'.

e Define a,w = w” x t(a) x w.

Further, define py.o @ w — cw to be the edge (", a, w®) in T (s(w), t(w)).
3.4. LEMMA. [Path Regularity] Fiz a simple computad I" which is 2-linear between a and
b. Suppose ¢ = (¢, ..., 1) and Y = (Yp, ..., 1) are two paths in T (a,b). If these paths

have the same source and the same target, then

(a) there holds n = m,

(b) and there exist 2-edges av, ..., (v, paths wy, vy, ..., Wy, v, froma to b, and a permutation
o of {1,...,n} such that ¢; = pu, .o, and ¥; = ooyt -



8 NICHOLAS CECIL

PROOF. We consider the path ¢. By definition of edges in I''(a,b) there exist 2-edges
aq, ..., o, and paths wy, ..., w, from a to b such that ¢; = p,, o, Note that 2-linearity and
non-triviality implies that the ay, ..., a, are distinct. Choose edges e; € s(q;) which is
non-empty by non-triviality. By 2-linearity, e; is not in the target ¢(¢) = t(¢)). But, by
planarity, the only 2-edge containing e in its source is ay. So, some p,, o, appears in
for some path vy from a to b. If n =1, then n < m. Else, repeat the above analysis with
5. This process terminates at the n-th step, whence n < m and for each ¢ € {1,...,n}
we have some p,, o, as an edge in ¢. By an identical argument applies to v, we obtain
m < n. So, m =n and all edges in ¢ are of the form p,, q,. "

3.5. THEOREM. [Path Equivalence] Fiz a simple computad I' which is 2-linear between
a and b. Suppose ¢ = (¢, ..., 01) and ¥ = (Vp, ..., ¢,) are two paths in T'(a,b). If these
paths have the same source and the same target, they are equivalent under the relation
yielding FT(a,b).

PrROOF. We induct on n. The base case of n = 1 is clear by planarity. The paths must
actually be equal. Write p for the source path of ¢ and ¥. If n = 2 and if ¢ # 1 then
& = (pwp, Ppa) ad Y = (pya, pps) by path regularity. It follows that (up to the ordering
of s(a) and s(f)) that p decomposes as concatenation

p=p"xs(B)*p™*s(B)*p".

At once, the equivalence of ¢ and 1 follows from the definition of the relation defining
FT(a,b).

Now, let us assume that n > 2 and assume the result for shorter paths. If ¢; = 1,
reduce to the n — 1 case. We will assume this does not occur. Write ¢; = p, o, and
1; = pe; Where here e is just some path we need not name. Note that the collection
{B; : i} is the same as {a; : i}. With this notation, the path ¢ is

p—2= (a)p L= - =L (an)w - (a1)up

We note that s(f;) is present as a subpath of p. None of these edges are removed by «;
since o # By from ¢ # 11 and thus are present in (aq).p. We can thus form

(Br)s(a1)sp = (e1)(B1)p
We have the diagram

(a1)p —— - —L (n)s e+ (an)up

S
N,

e —— - = (Ba)e - (Bu)ep

(a).p \ q
/
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Consider ay. The path s(ag) occurs in (aq).p. Further, ay € {5;}. So, unless 51 = ao,
we can form (ag).(51)«(a1)«p. Repeat for as. So, writing 51 = ax and a; = 3, we have
the diagram

(o1)up P, ... L (o) (an)p —2— -+
Sy e N
p (ﬁl)*(Ckl)*p q
P ~
p ’ p\ P
(B1)« 7 > VR (Be)s - (Br)wp —
Now, ¢ is the dashed composite
(O1)up —--meob o Py (o) () T
21 N
L \4 -’ p/ ~
/// \>(
p (B1)+(01)sp q
P ™~
p ’ p\ P
(B1)- T I (Be)s -+ (Br)s«p —
By the induction hypothesis, this is equivalent to the dashed composite
(o1)up L. b (o) (an)up T -
p //\( \\\ .’/? \\\
// \\\ p...p \\
//// P \\>L /’/ \\>.(
p (B1)«(1)4p q
P ~
> p...p\ f
(B1)+ b > (Bo)e (B1)ep —5—
Continuing in this manner we get equivalence with ¢, the bottom path. n

3.6. COROLLARY. IfT" is a simple computad which is 2-linear between a and b, then for
any paths p,q from a to b, the hom-set Hompr(p, q) is a singleton.

3.7. DEFINITION. A pasting scheme is a triple (I',p,q) in which T is a simple com-
putad, p,q are paths in Ty from a to b, and T is 2-linear from a to b. We write
ar € Hompgr(p, q) for the unique 2-morphism. If C is a 2-category, a pasting diagram
of shape (', p,q) in C is a functor ® : FT' — C. Its composite is ®(ar).

3.8. REMARK. The above definition of pasting scheme is designed so that ar is unique. As
presented, it is more rigid than is strictly necessary. For instance, consider the computad

w

b Q
-

a—>b C



10 NICHOLAS CECIL

which is not acyclic and thus cannot be the computad underlying a pasting scheme.
However, there is clearly a unique morphism in FT from p to ¢q. The offending loop w is
irrelevant. To encode this, one could define the envelope &, , C I' to be the smallest sub-
computad containing all paths in I'?(a,b) from p to q. Then one could say that (T, p, q)
is a pasting scheme when &, ; is simple and 2-linear from a to b.

4. Comparison with Classical Pasting Schemes

In this section, we review the plane graph based definition of pasting scheme and diagram
from [JY21]. We show that any pasting diagram in this sense gives rise to a pasting
diagram in the sense of the previous section and that these have the same composite.

4.1. DEFINITION. A plane graph is a graph G equipped with a specific embedding (of its
geometric realization) in the plane. A connected component of R*\ G is called face of G.
The unique unbounded face is called the exterior face. The others are interior faces.
The topological boundary OF of a face consists of (the realization of ) a set of edges Op of
G which is also called the boundary of the face.

4.2. DEFINITION. If F is a face of a plane graph G, an anchoring of I' is the choice of
the following data:

o Two vertices s and tf called the vertex source and vertex target of the face;

o Two paths st and tf' from sl to t§ with disjoint sets of edges each of which belongs
to Op. These are called the path source and path target of the face. When F
is the exterior face, one writes s’ = s¢ and tI' =t for i = 0,1 and speaks of the
source/target of the graph.

e For interior F' we make the following additional requirement. While traversing st
the face F must always lie to the right. While traversing ti", the face F must always
lie to the left.

e For the exterior face we make the following additional requirement. While traversing
s, the exterior must always lie to the left. While traversing t§, the exterior must
always lie to the right.

An anchored graph is a plane graph equipped with an anchoring of each face.

4.3. DEFINITION. An atomic anchored graph is an anchored graph with exactly one
interior face. All such can be schematically drawn as

for some paths p,q which may be empty.
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4.4. DEFINITION. Given two anchored graphs G and H with t§ = s, there is vertical
composite HG. Its underlying graph is the graph theoretic pushout H Use G. Its interior
faces are (in bijection with) those belonging to either H or G. Each has the same source

and target vertices and paths. Further, sf1% = s¢ and t11¢ = 1. Moreover, slI% = s§ =

H HG _ 4G _ 4H
sy and ty'” =t =1 .

4.5. DEFINITION. A classical pasting scheme is a finite anchored graph G for which
there exists a decomposition G = A, A,_1 -+ Ay with each A; atomic.

4.6. DEFINITION. Fiz a 2-category C and pasting scheme G. A classical pasting dia-
gram P in C labeled by G consists of the following data.

o A functor ® : G — C from the free category on the digraph underlying G to C.
e For each interior face F of G a 2-morphisms ®(F) : ®(si") — ®(tl") in C.

4.7. DEFINITION. If ® is a classical pasting diagram in C labeled by classical pasting
scheme G, its composite is that 2-morphisms ag : ®(s§) — ®(t§) obtained by the
following procedure.

(1) Decompose G into atomic pasting schemes G = A, A,_1--- Ay. Write each A; as

2) For eachi=1,...,n, define a; : ®(s5) — Pt by whiskering
1 1

a; = O(g;) * ®(F;) * O(p;).

(3) Set ag = apay - - ay.

As written, the composite of a pasting diagram depends not just on the diagram but also
on the decomposition into atomics. It turns out that the decomposition does not effect
the composite.

4.8. THEOREM. [JY21] The composite of a classical pasting diagram is independent of
the choice of decomposition into atomics.

4.9. DEFINITION. Let G be an anchored graph. We describe now its assoctated com-
putad I'C. The underlying graph T'§ = G. Given vertices a,b € G, the graph T'(a,b) is
empty unless there is a face F for which a = s§ and b = tf. In that case, T¢ (st tI) is

€r
sp —— 1y
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4.10. PROPOSITION. If G is a classical pasting scheme, T'C is simple and 2-linear from
€] el
sy to ty.

PRrROOF. Fix an atomic decomposition G = Ay ---A;. We will induct on N. The base
case N =1 follows by inspection.

Let us assume that H = Ay_;---A; is simple and 2-linear from sOG to tOG . We ob-
serve that by construction G = AyH and I'® can be obtained from I'? as follows. Fix
vertices a,b and a path p : a — b in T. We adjoin to I' a new path ¢ : a — b and a
single 2-edge o : p — ¢. The result is I'“.

If T'Y were not acyclic, there would be a cycle in T'S involving ¢. In this cycle, replace ¢
by p. The result is a cycle in '}l which is impossible. So, T'“ is acyclic.

By construction, I'“ is planar and non-trivial as soon as I'? is.

It only remains to consider 2-linearity. Fix a path ¢ = (¢, ..., 1) in T1(s§,t5). Suppose
e is an edge in s(¢;) but not t(¢;) for some 1 < i < n. We note that e cannot be in the
path ¢ since none of those edges lie in the source of a 2-edge. For each ¢; = (g;, aj, f;),
we observe that if any edge in ¢ lies in the source or target path, then so does the entirety
of g. Replace ¢ by p. If a; = a*, delete ¢;. By so doing, obtain a path ¢ = (¢,,,, ..., }).
By construction ¢ is a path in T'# (s, t§) and there is i’ = 1, ..., m so that e is an edge in
s(¢l,) but not t(¢y). If there is k > i so that e lies in #(¢y), there would then by k' > ¢’
with e in ¢(¢},). This is impossible as I'*! is 2-linear. So, I'“ is 2-linear. ]

4.11. DEFINITION. When G is a classical pasting scheme, its assoctated pasting scheme
is (19, 57, 17).

4.12. REMARK. There are pasting schemes which do not arise from classical pasting
schemes. For instance, consider the computad I' whose underlying graph is

NN
N, AN A

and whose graphs of two edges are empty save for I'(a, e) which contains an unique edge
(k,h,g, f) = (K., ¢, f). Write ¢ : s{ — % for the 2-edge on T'¢ contributed to the
face A; of G. Then write ¢; = (¢, €, p;). Observe that (¢, ..., ¢1) is a path from s§ to ¢
in I'%. So, the composite of the pasting scheme in the sense of this paper is

(I)<Qn * €p *pn) T (I)((h * €1 *pl)-
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This is precisely the composite of ® as a classical pasting diagram as defined in Definition
4.7.

4.13. PROPOSITION. Fiz a 2-category C, a classical pasting diagram ® in C labeled by G.
Observe that ® is exactly the data of a computad morphism ® : T¢ — UC. The composite
of ® in the classical sense is exactly ®(arc).

PRrooF. Take a decomposition of GG into atomic G = A, A, _1---A;. Write each atomic

as

F.
st

1
Di e S
s§ —— 553 F; tOF’ —— t§
- >

Fy

t

for paths p;, ¢; in G. n
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