Stacks as 2-Sheaf

Nicholas Cecil

Contents

1 A 2-Limit 1

2 Stacks 7

Let \mathcal{T} be the category of topological spaces and \mathscr{S} be the category of sets. A presheaf $\mathcal{T}^{op} \xrightarrow{F} \mathscr{S}$ is a sheaf when, for every space X and open cover $\{U_i\}$ of X

$$F(X) \longrightarrow \prod_i F(U_i) \Longrightarrow \prod_{(i,j)} F(U_{ij})$$

is an equalizer. Here $U_{ij} = U_i \cap U_j$. The goal of this note is to prove that a category \mathfrak{X} fibred in groupoids over \mathcal{T} and viewed as a normal pseudo-functor $\mathcal{T}^{\text{op}} \xrightarrow{\mathfrak{X}} \mathfrak{Grpd}$ is a stack provided for each space X and open cover $\{U_i\}$ of X, the groupoid $\mathfrak{X}(X)$ is the 2-limit of a diagram

$$\prod_{i} \mathfrak{X}(U_{i}) \Longrightarrow \prod_{(i,j)} \mathfrak{X}(U_{ij}) \Longrightarrow \prod_{(i,j,k)} \mathfrak{X}(U_{ijk})$$

in the 2-category \mathfrak{Grpd} of groupoids.

The strategy is to prove that the 2-limit of this diagram is exactly the category of descent data for \mathfrak{X} over the cover $\{U_i\}$.

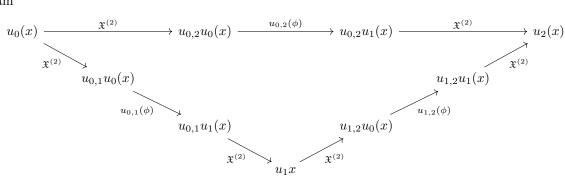
1 A 2-Limit

Notation Let $\Delta_{\leq 2}^+$ denote that subcategory of the simplex category on objects [0], [1], and [2] and whose maps are the monomorphisms. We write $[n] \xrightarrow{u_S} [m]$ for that unique map with image S. Thus, $[0] \xrightarrow{u_1} [1]$ is that map with $u_0(1) = 1$ and $[1] \xrightarrow{u_{0,2}} [2]$ is that map with $u_{0,2}(0) = 0$ and $u_{0,2}(1) = 2$. If $\Delta_{\leq 3}^+ \xrightarrow{\mathfrak{X}} \mathcal{C}$ is a pseudo-functor, we will also write $\mathfrak{X}_n \xrightarrow{u} \mathfrak{X}_m$ for the image of $[n] \xrightarrow{u} [m]$ under \mathfrak{X} .

Concession to Laziness I'll assume that the pseudo-functor presenting our category fibred in groupoids is an honest functor. This can always be assumed up to equivalence, so there is not much loss.

Construction of \mathcal{L} Fix a functor $\Delta_{\leq 3}^+ \xrightarrow{\mathfrak{X}} \mathfrak{Grpd}$. We define a groupoid $\mathcal{L} = \mathcal{L}_{\mathfrak{X}}$ as follow.

• An object is a pair (x, ϕ) . Here $x \in \mathfrak{X}_0$ and $u_0(x) \xrightarrow{\phi} u_1(x)$ is a morphism in \mathfrak{X}_1 . We further require that the diagram



commutes. Call this the cocycle condition. Here $\mathfrak{X}^{(2)}$ is the natural distribution of \mathfrak{X} over function composition (which we suppose is identity).

• A morphism $(x,\phi) \xrightarrow{\alpha} (y,\psi)$ is a morphism $x \xrightarrow{\alpha} y$ in \mathfrak{X}_0 such that the diagram

$$\begin{array}{ccc}
u_0(x) & \stackrel{\phi}{\longrightarrow} u_1(x) \\
u_0(\alpha) \downarrow & & \downarrow u_1(\alpha) \\
u_0(y) & \stackrel{\psi}{\longrightarrow} u_1(y)
\end{array}$$

commutes.

The goal of the section is to prove

Theorem 1.0.0

2-Limit Model

The groupoid $\mathcal{L} = \mathcal{L}_{\mathfrak{X}}$ is the 2-limit of \mathfrak{X} .

Remark Let us recall what this means.

- There is a pseudo-natural transformation $\Delta_{\mathcal{L}} \stackrel{\lambda}{\Rightarrow} \mathscr{X}$. Here $\mathcal{D}_{\mathcal{L}}$ is the constant functor with value \mathcal{L} .
- For any other groupoid \mathcal{G} , the induced functor $\operatorname{Hom}(\mathcal{G},\mathcal{L}) \to \operatorname{Hom}(\Delta_{\mathcal{G}},\mathfrak{X})$ is an equivalence of categories.

As a first step, we construct λ .

Construction of λ We define a natural transformation $\Delta_{\mathcal{L}} \stackrel{\lambda}{\Rightarrow} \mathfrak{X}$ as follows.

- The component $\mathcal{L} \xrightarrow{\lambda_0} \mathfrak{X}_0$ is given by $\lambda_0(x,\phi) = x$. The action on morphisms is similar.
- The component $\mathcal{L} \xrightarrow{\lambda_1} \mathfrak{X}_1$ is given by $\lambda_1(x,\phi) = u_0(x)$ and likewise on morphisms.
- The component $\mathcal{L} \xrightarrow{\lambda_2} \mathfrak{X}_2$ is given by $\lambda_2(x) = u_{0,1}u_0(x) = u_0(x)$ and likewise on morphisms.

This specifies the on-objects components of λ . We now give the on-morphism components:

- All identity components are identity.
- The $[0] \xrightarrow{u_0} [1]$ component is identity.
- The component for $[0] \xrightarrow{u_1} [1]$ is

$$\lambda_1(x,\phi) = u_0(x) \xrightarrow{\phi} u_1(x) = u_1 \lambda_0(x,\phi).$$

- The component for [1] $\xrightarrow{u_{0,1}}$ [2] is identity.
- The component for [1] $\xrightarrow{u_{0,2}}$ [2] is identity.
- The component for $[1] \xrightarrow{u_{1,2}} [2]$ is

$$\lambda_2(x,\phi) = u_{0,1}u_0(x) \xrightarrow{u_{0,1}(\phi)} u_{0,1}u_1(x) = u_{1,2}\lambda_1(x,\phi).$$

- The component for $[0] \xrightarrow{u_0} [2]$ is identity.
- The component for $[0] \xrightarrow{u_1} [2]$ is

$$\lambda_2(x,\phi) = u_{0,1}u_0(x) \xrightarrow{u_{0,1}(\phi)} u_{0,1}u_1(x) = u_1\lambda_0(x,\phi).$$

• The component for $[0] \xrightarrow{u_2} [2]$ is

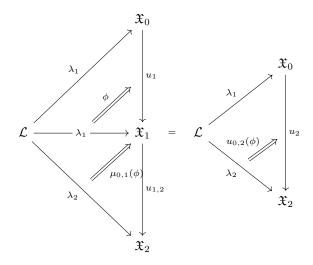
$$\lambda_2(x,\phi) = u_{0,2}u_0(x) \xrightarrow{u_{0,2}(\phi)} u_{0,2}u_1(x) = u_2\lambda_0(x,\phi).$$

Lemma 1.0.0

Well Definition of λ

The above construction yields a pseudo-natural transformation $\mathcal{D}_{\mathcal{L}} \xrightarrow{\lambda} \mathscr{X}$.

Proof. This is a tedious series of checks best done in the comforts of one's office. The only check which is not immediate is the pasting equality



This may be equivalently phrased for each $(x, \phi) \in \mathcal{L}$ as the commutativity of

This is assured by the definition of \mathcal{L} .

QED

Lemma 1.0.1

Equivalence

For any groupoid \mathcal{G} , the functor $\operatorname{Hom}(\mathcal{G},\mathcal{L}) \xrightarrow{\Phi} \operatorname{Hom}(\Delta_{\mathcal{G}},\mathfrak{X})$ given by pushforward along λ is an equivalence of categories.

Proof. First, let us fix some notation. Suppose that $\mathcal{G} \xrightarrow{F'=(F,\phi)} \mathcal{L}$ is a functor. Then for any object $x \in \mathcal{G}$ we have some $(Fx,\phi_x) \in \mathcal{L}$ where $Fx \in \mathfrak{X}_0$ and $u_0(Fx) \xrightarrow{\phi_x} u_1(Fx)$ is a map. If $x \xrightarrow{f} y$ is a map in \mathcal{G} then $(Fx,\phi_x) \xrightarrow{F'f} (Fy,\phi_y)$ is a map in \mathcal{L} with $Fx \xrightarrow{Ff} Fy$ in \mathfrak{X}_0 .

With this setup, we describe $\Delta_{\mathcal{G}} \xrightarrow{\Phi(F')} \mathfrak{X}$. The component of this natural transformation at $i \in \{0, 1, 2\}$ is exactly the composite $\mathcal{G} \xrightarrow{F} \mathcal{L} \xrightarrow{\lambda_i} \mathfrak{X}$. The component at a map $u \in \Delta_{\leq 2}^+$ is exactly the whiskering $\lambda_u * F$.

Now, suppose that $\mathcal{G} \xrightarrow{H'=(H,\psi)} \mathcal{L}$ is another functor and that $F' \stackrel{\alpha'}{\Rightarrow} H$ is a natural transformation. For every $x \in \mathcal{G}$ we then have $Fx \xrightarrow{\alpha'_x=\alpha_x} Hx$ in \mathfrak{X}_0 . This yields a natural transformation $F \stackrel{\alpha}{\Rightarrow} H$ between functor $\mathcal{G} \xrightarrow{F,H} \mathfrak{X}_0$. So, applying Φ , we obtain a modification $\Phi(F') \stackrel{\Phi(\alpha')}{\Rightarrow} \Phi(H')$. Its component at $i \in \{0,1,2\}$ is the whiskering $\lambda_i * \alpha$. In particular $\Phi(\alpha')_0 = \alpha$.

We will now prove that Φ is fully faithful and essentially surjective.

The equality $\Phi(\alpha')_0 = \alpha$ above tells us that α' may be recovered from $\Phi(\alpha')$ so that Φ is faithful.

Consider functors $\mathcal{G} \xrightarrow{F',H'} \mathcal{L}$ as above and consider a modification $\Phi(F') \stackrel{\Gamma}{\Rightarrow} \Phi(H')$. We take the component at $[0] \in \mathcal{D}_{\leq 2}^+$ to obtain a natural transformation

$$\mathcal{G} \xrightarrow{F} \mathfrak{X}_0$$

Thus, for each $x \in \mathcal{G}$ we have a map $Fx \xrightarrow{\Gamma_x^0} Hx$ in \mathfrak{X}_0 . We claim that these are also maps $(Fx, \phi_x) \xrightarrow{\Gamma_x^0} (Hx, \psi_x)$ in \mathcal{L} and that this action of Γ is natural. Once done, this proves that Φ is full.

We verify that Γ^0_x is a map in $\mathcal L$ first. For this, we need show that

$$\begin{array}{ccc} u_0(Fx) & \xrightarrow{\phi_x} & u_1(Fx) \\ u_0(\Gamma_x^0) & & & \downarrow u_1(\Gamma_x^0) \\ u_0(Hx) & \xrightarrow{-\psi_x} & u_1(Hx) \end{array}$$

commutes. That Γ is a modification yields the equality.

Reading off a component at $x \in \mathcal{G}$ tells us that

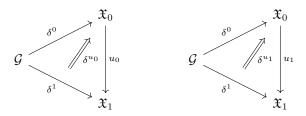
$$\begin{array}{ccc} u_0(Fx) & \xrightarrow{\phi_x} & u_1(Fx) \\ \Gamma_x^1 & & & \downarrow u_1(\Gamma_x^0) \\ u_0(Hx) & \xrightarrow{\psi_x} & u_1(Hx) \end{array}$$

commutes. So, we are done once $u_0(\Gamma_x^0) = \Gamma_x^1$. But this follows from the pasting equality

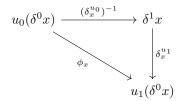
So we have that Γ_x^0 lies in \mathcal{L} . We must verify the cocycle condition. But this is the same diagram chase as is well definition of λ . Finally, naturality follows at once from naturality of Γ^0 (a map into \mathcal{L} is natural once its projection to \mathfrak{X}_0 is).

We have shown that Φ is fully faithful. We must now show that it is essentially surjective. To this end, fix a

pseudo-natural transformation $\Delta_{\mathcal{G}} \xrightarrow{\delta} \mathfrak{X}$. We have then a functor $\mathcal{G} \xrightarrow{\delta^0} \mathfrak{X}_0$. We also have diagrams



which yields for each $x \in \mathcal{G}$ a composite map $\delta^1 x \xrightarrow{\delta_x^{\mu_1}} u_0(x)$.



We then define $\mathcal{G} \xrightarrow{D} \mathcal{L}$ by $Dx = (\delta^0 x, \phi_x)$ on objects and by δ^0 on morphisms.

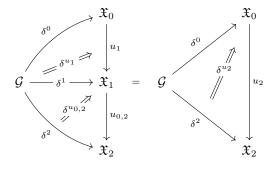
We must now verify that ϕ_x satisfies the cocycle condition so that D is well defined. That is, we must prove $u_{0,1}(\phi_x) = u_{1,2}(\phi_x)u_{0,1}(\phi_x)$. Using the definition of ϕ_x this is the same as

$$u_{0,2}(\delta_x^{u_1}(\delta_x^{u_0})^{-1}) = u_{1,2}(\delta_x^{u_1}(\delta_x^{u_0})^{-1})u_{0,1}(\delta_x^{u_1}(\delta_x^{u_0})^{-1}).$$

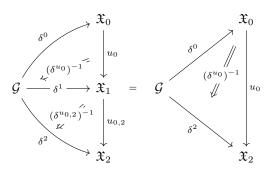
This is equivalent to

$$u_{0,2}(\delta_x^{u_1})u_{0,2}(\delta_x^{u_0})^{-1} = u_{1,2}(\delta_x^{u_1})u_{1,2}(\delta_x^{u_0})^{-1}u_{0,1}(\delta_x^{u_1})u_{0,1}(\delta_x^{u_0})^{-1}.$$

We now use



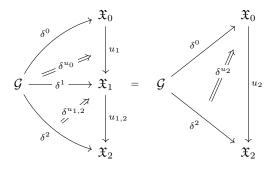
and



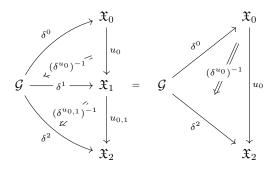
to deduce

$$u_{0,2}(\delta_x^{u_1})u_{0,2}(\delta_x^{u_0})^{-1} = u_{0,2}(\delta_x^{u_1})\delta_x^{u_0,2}(\delta_x^{u_0,2})^{-1}u_{0,2}(\delta_x^{u_0})^{-1}$$
$$= \delta_x^{u_2}(\delta_x^{u_0})^{-1}$$

Next, we use



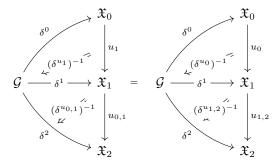
and



to obtain

$$\begin{split} \delta_x^{u_2}(\delta_x^{u_0})^{-1} &= u_{1,2}(\delta_x^{u_1})\delta_x^{u_{1,2}}(\delta_x^{u_{0,1}})^{-1}u_{0,1}(\delta_x^{u_0})^{-1} \\ &= u_{1,2}(\delta_x^{u_1})\delta_x^{u_{1,2}}(\delta_x^{u_{0,1}})^{-1}u_{0,1}(\delta_x^{u_1})^{-1}u_{0,1}(\delta_x^{u_1})u_{0,1}(\delta_x^{u_0})^{-1} \\ &= u_{1,2}(\delta_x^{u_1})\delta_x^{u_{1,2}}(\delta_x^{u_{1,2}})^{-1}u_{1,2}(\delta_x^{u_0})^{-1}u_{0,1}(\delta_x^{u_1})u_{0,1}(\delta_x^{u_0})^{-1} \\ &= u_{1,2}(\delta_x^{u_1})u_{1,2}(\delta_x^{u_0})^{-1}u_{0,1}(\delta_x^{u_1})u_{0,1}(\delta_x^{u_0})^{-1}. \end{split}$$

where we have used



This at last proves the cocycle condition. So, D is a well defined functor. It only remains to show that $\Phi(D) \cong \delta$. Once done, Φ is a fully faithful essential surjection whence an equivalence.

We recall that $\Phi(D)_0\lambda_0 \circ D = \delta^0$. We have that

$$\Phi(D)_1 = \lambda_1 \circ D = u_0 \circ \delta^0.$$

This is isomorphic to δ^1 via δ^{u_0} . Likewise

$$\Phi(D)_1 = \lambda_2 \circ D = u_0 \circ \delta^0.$$

This is isomorphic to δ^1 via δ^{u_0} . One checks that these are the components of a modification. QED

Stacks $\mathbf{2}$

So, any category \mathfrak{X} fibred in groupoids over \mathcal{T} paired with an open cover $\{U_i\}$ of a space X defines a (normal pseudo-) functor $\Delta_{\leq 2}^+ \xrightarrow{\mathfrak{X}'} \mathfrak{Grpd}$ by

$$\mathfrak{X}_0' = \prod_i \mathfrak{X}(U_i)$$
 and $\mathfrak{X}_1' = \prod_{(i,j)} \mathfrak{X}(U_{ij})$ and $\mathfrak{X}_2' = \prod_{(i,j,k)} \mathfrak{X}(U_{ijk})$

and an action on morphisms by restriction. By the prior computation, we see that the 2-limit of this diagram is the category of descent data for the cover. Thus, we prove

Theorem 2.0.2 Stack as 2-Sheaf

A category \mathfrak{X} fibred in groupoids over \mathcal{T} is a stack if and only if for every open cover of a space X the canonical map $\mathfrak{X}(Y) = \lim_{n \to \infty} \mathfrak{X}' = \lim_{n \to \infty} \mathfrak{X}'$ map $\mathfrak{X}(X) \to \lim^2 \mathfrak{X}'$ is an equivalence.