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Let T be the category of topological spaces and . be the category of sets. A presheaf 7°P Ly 7 is a sheaf when,
for every space X and open cover {U;} of X

FX) — [, F(U;)) —= H(i,j) F(Ui;)

is an equalizer. Here U;; = U; N U;. The goal of this note is to prove that a category X fibred in groupoids over T

and viewed as a normal pseudo-functor 7°P X &pd is a stack provided for each space X and open cover {U;} of
X, the groupoid X(X) is the 2-limit of a diagram

Hi x(Uz> — H(i,j) X(Uij) = H(i,j,k) 36(Uijlc)

in the 2-category &tpo of groupoids.

The strategy is to prove that the 2-limit of this diagram is exactly the category of descent data for X over the
cover {U;}.

1 A 2-Limit

Notation Let A;Q denote that subcategory of the simplex category on objects [0], [1], and [2] and whose maps

S U1

are the monomorphisms. We write [n] —> [m] for that unique map with image S. Thus, [0] — [1] is that map with

uo,2

up(l) = 1 and [1] —= [2] is that map with ug2(0) = 0 and ug2(1) = 2. If A;S L Cisa pseudo-functor, we will
also write X,, = X, for the image of [n] = [m] under X.

Concession to Laziness I'll assume that the pseudo-functor presenting our category fibred in groupoids is an
honest functor. This can always be assumed up to equivalence, so there is not much loss.

Construction of £ Fix a functor A—£3 =N Brpd. We define a groupoid £ = Lx as follow.

o An object is a pair (z,¢). Here z € Xy and wuo(x) 2, up(x) is a morphism in X;. We further require that the

diagram
@) 2(9) 2
uo(x) x ug,2Uo () TS N ug,2u1 () * uz(x)
36(2\) 4;
UQJ’U,O(.T) ul,gul(x)
uo,m /1,2((25)
ug,1u1 () u1,2uo ()
m 4
U1x



commutes. Call this the cocycle condition. Here X(?) is the natural distribution of X over function composition
(which we suppose is identity).

« A morphism (x,¢) = (y,) is a morphism x = y in X( such that the diagram

uo (@) —2— i (2)

Jurte

uo(y) —5— ui(y)

comimutes.

The goal of the section is to prove

Theorem 1.0.0 ] [Z-Limit Mode11>

The groupoid £ = Lx is the 2-limit of X.

Remark Let us recall what this means.
e There is a pseudo-natural transformation A, 2 2. Here D, is the constant functor with value L.
o For any other groupoid G, the induced functor Hom(G, £) — Hom(Ag, X) is an equivalence of categories.

As a first step, we construct \.

Construction of A  We define a natural transformation A, A % as follows.
e The component £ 205 % is given by Ag(z, ¢) = x. The action on morphisms is similar.

The component £ A xy s given by Aj(z, ¢) = ug(z) and likewise on morphisms.

e The component £ 225 %, s given by Ag(x) = ug1uo(r) = uo(z) and likewise on morphisms.
This specifies the on-objects components of A\. We now give the on-morphism components:

o All identity components are identity.

o The [0] “% [1] component is identity.

U1

The component for [0] — [1] is

M(z,¢) = uo(x) 2, up(x) = urAo(x, @).

0,1

o The component for [1] tody [2] is identity.

« The component for [1] —25 [2] is identity.

u1,2

o The component for [1] —= [2] is

uo,1 a3
Aa(x, @) = uo,1uo(w) 20a1(8), uo,1u1 () = ui2A1(x, @).

« The component for [0] 2% [2] is identity.

U1

o The component for [0] — [2] is

u0,1(¢
Ao (1, @) = uo,1uo(x) o (9), up,1u1 () = urdo(z, @).



+ The component for [0] ~25 [2] is

uo,2 93
Ao (1, @) = up,2uo(x) to2(0), ug,2u1 () = upAo(, @).

Lemma 1.0.0 J {Well Definition of \

The above construction yields a pseudo-natural transformation D, LNy

Proof. This is a tedious series of checks best done in the comforts of one’s office. The only check which is not
immediate is the pasting equality

Xo
A1 w Xo
L M—— X, = L u2
uo,2(9)
%,1@ A2

ul,?

X

This may be equivalently phrased for each (x,¢) € £ as the commutativity of
uo,2()
Uovl’tl,o(l‘) UO,QUO(‘T) E— UQQ’U&(SE) ULQUJl(I)

T e

up,1u1 (r) === u1 2uo(7)

This is assured by the definition of L. QED

Lemma 1.0.1 ]

Equivalence

For any groupoid G, the functor Hom(G, £) 2, Hom(Ag, %) given by pushforward along A is an equivalence
of categories.

F'=(F, . .
Proof. First, let us fix some notation. Suppose that G M L is a functor. Then for any object z € G

we have some (Fx,¢,) € L where Fx € Xy and wuo(F'z) LZN ui(Fz) is a map. If x ER y is a map in G then
(Fx, ¢y) EEN (Fy, ¢y) is a map in £ with Fx EEN Fy in X,.

(F’
With this setup, we describe Ag M X. The component of this natural transformation at ¢ € {0,1,2} is ex-

actly the composite G For 2 % The component at a map u € AiQ is exactly the whiskering A, * F'.

H'=(H, . ! . .
Now, suppose that G % L is another functor and that F/ S H is a natural transformation. For every

2 € G we then have Fz =% Hz in Xo. This yields a natural transformation F' = H between functor G A, Xo.
So, applying ®, we obtain a modification ®(F") *) ®(H’). Its component at i € {0,1,2} is the whiskering \; * c.

In particular ®(a')o = a.

We will now prove that ® is fully faithful and essentially surjective.



The equality ®(a’)y = a above tells us that o’ may be recovered from ®(a’) so that ® is faithful.

Consider functors ¢ — £ as above and consider a modification O(F) EN ®(H'). We take the component at
[0] € DL, to obtain a natural transformation

0

r o
Thus, for each « € G we have a map Fax — Hx in X5. We claim that these are also maps (Fz, ¢,) —= (Hx,1,) in
L and that this action of ' is natural. Once done, this proves that ® is full.

We verify that T'O is a map in £ first. For this, we need show that

ug(Fx) BN up (Fz)
uo 1) Jwrrt)

uo(Hx) - ui(Hx)

commutes. That I' is a modification yields the equality.

H
R
Gl T %o G —1 %
F
e M7 i
A *xF Gox,
G e & ¢ I %
Fol\q

Reading off a component at = € G tells us that

UO(Fx) L) U1(F$)

o] Jus)

ug(Hx) — ui(Hzx)

commutes. So, we are done once ug(I')) = I'L. But this follows from the pasting equality

H

VR
A I G —1 %
\F/’
uo = Ui
Ho\p
R
g XoF X1 g &1% X1
Fo\

So we have that I'Y lies in £. We must verify the cocycle condition. But this is the same diagram chase as is well
definition of A. Finally, naturality follows at once from naturality of I'° (a map into £ is natural once its projection

to .’{0 iS).

We have shown that & is fully faithful. We must now show that it is essentially surjective. To this end, fix a



0
pseudo-natural transformation Ag 9 X. We have then a functor g LN Xo. We also have diagrams

.}:0 %O
g %UO uo g %“1 (5%
%1 :{1

w1
which yields for each € G a composite map &'z LN uo ().

ugy—1
ug(0°7) G0 BNy B

5t
up (0%7)

We then define G EENY by Dx = (6°z, ¢,) on objects and by 6 on morphisms.

We must now verify that ¢, satisfies the cocycle condition so that D is well defined. That is, we must prove
u0,1(0z) = u1,2(¢z)u0,1(¢s). Using the definition of ¢, this is the same as

0,2(85 (020) 1) = w1 2 (05 (65°) ™ uo,1 (65 (54°) ).
This is equivalent to
0,2(04 tug,2(64°) F = 2 (85 Jur2(650) " o1 (64 Juo,1 (520) 71

We now use

3€0 xO
60
Ul 60
g = Vi
= 5u2
g §t— %1 = g // U2
A
§10,2
Va uo,2 52
62
352 x?
and
Xo Xo
u s° //
0
A((é“’o)_ (540)1
g g — X1 = g / uo
51/.0’2 /1—1
(Y/ ) wo.n b
62
:fg xQ
to deduce

10,2(04" Juto,2(64°) ™F = g 2(64) 0502 (54°2) g 2 (540) !

— g2e(ou) !



Next, we use

%0 %0
50
Uy §°
o &7 7
=0 512
g st—> X = G // u2
u }{
é/ 1,2 _ )
5
62
XQ x2
and
360 xO
60
U
(6v0)~" (5%)//1
G—s—X = G J |
S40,1 /;1
o Ly, P
62
362 x?
to obtain
S22 (8u0) ™! = ug o (041 ) 0812 (40 ) g1 (650)
= w2 (651) 042 (5400 ) " Pug,1 (041) Mg, (041 uo,1 (540)
a2 ( )

where we have used

Xo Xo
Ul uo
(5u1)=1 (540)=1
g st— X4 = @ st— X4
Ve Ve
ug,1y—1 uy 9y —1
(617 ) uo,1 (6,‘ ) ui,2
52
.’{2 :{2

~

This at last proves the cocycle condition. So, D is a well defined functor. It only remains to show that ®(D) = 4.
Once done, @ is a fully faithful essential surjection whence an equivalence.

We recall that ®(D)g)\g o D = §°. We have that

®(D); = A1 oD =ugod.
This is isomorphic to ¢! via §“0. Likewise

®(D); = Ag0D =ugod.

This is isomorphic to 6! via 6“0. One checks that these are the components of a modification. QED



2 Stacks

So, any category X fibred in groupoids over T paired with an open cover {U;} of a space X defines a (normal pseudo-)

functor A‘£2 X, &rpd by
Xy = [[xW:) and x{ = [] X(Us) and x5, = [ x(Ui)
i (4,9) (B:3:k)

and an action on morphisms by restriction. By the prior computation, we see that the 2-limit of this diagram is the
category of descent data for the cover. Thus, we prove

Theorem 2.0.2 | (Stack as 2-Sheaf

A category X fibred in groupoids over 7 is a stack if and only if for every open cover of a space X the canonical
map X(X) — lim® ¥’ is an equivalence.
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