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Abstract

We give a new proof that the opposite of Joyal’s disk category Dn is
Berger’s wreath product category Θn = ∆ ≀ · · · ≀ ∆. Our techniques con-
tinue to apply when the simplex category ∆ is replaced by Connes’ cyclic
category Λ and some other crossed simplicial groups.

1 Introduction

Joyal introduced finite combinatorial n-disks in his study of higher categories
[Joy97]. These n-disks fit together to determine a category Dn which he used to
introduce a notion of weak n-categories. In this setting, the image of the Yoneda
embedding Dop

n ↪→ Fun(Dn, SET) is a collection of n-categories. Berger found an
inductive definition Θn for this category and produced equivalences

Θn ≃ Dop
n , (1)

see [Ber07]. We call Eqn. (1) Berger-Joyal duality.
The inductive definition of Θn is written in terms of a wreath product opera-

tion

(−) ≀ (−) : CAT/Γ × CAT → CAT
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where CAT/Γ is the category of pairs Cγ := (C, γ) where C is a small category and
γ : C → Γ is a functor from C to Segal’s category Γ (see Def. 2.0.3). In terms of
this operation, Berger defined Θn recursively according to the formulas

Θ1 := ∆

Θn := ∆ ≀Θn−1 for n > 1

where ∆ is the simplex category.
Since the wreath product is functorial, it is easy to study the outputs ofA≀X as

A and X vary. The same is not true for n-disks. This makes direct generalizations
of Berger-Joyal duality to other settings a tricky business. For example, in order
to replace the simplicial category ∆ by Connes’ cyclic category Λ one needs to
intuit the cyclic analogue of an n-disk; while possible, this kind of ingenuity does
not represent an extensible solution.

Theorem 4.0.2 contains a functorial construction of Berger-Joyal duality. In
order to solve this problem, we introduce a generalized wreath product operation
inspired by Kelly’s theory of clubs, see Insp. 3.1.1. If C is a 2-category which has
pullbacks and a terminal object ∗ and T : C → C is a functor then there is a
T -wreath product 2-functor

⊗T : C/T (∗) × C → C

see Def. 3.1.1. If C is the category CAT of small categories then we introduce the
pair of functors

Π : CAT → CAT and Πop : CAT → CAT

in Def. 3.2.1 and Def. 3.4.1. By construction, the Π-wreath product ⊗Π agrees
with Berger’s wreath product:

(−)⊗Π (−) ∼= (−) ≀ (−).

The functor Πop is defined to be the functor Π conjugated by the involution −op

of CAT and Thm. 3.4.6 shows that the Πop-wreath product satisfies

∇⊗Πop Dn ≃ Dn+1 for n ≥ 1

where ∇ ∼= ∆op is the interval category. Prop. 3.1.3 shows that the dual pair,
Π and Πop, of functors determines an isomorphism between the associated dual
pair of wreath products:

((−) ≀ (−))op ∼= (−)op ⊗Πop
(−)op.
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These ideas combine in Thm. 4.0.2 to give a functorial proof of Berger-Joyal du-
ality. The base case is D1 ≃ ∆op. Now, assuming Θ

op
n ≃ Dn,

Θ
op
n+1 = (∆ ≀Θn)

op

= (∆⊗Π Θn)
op

∼= ∆op ⊗Πop
Θop

n

≃ ∇⊗Πop Dn

≃ Dn+1.

The remainder of the paper contains a few steps towards applying this duality
theorem to the study of n-categories. Our motivation is to use this construction
to produce operations on higher categories. Roughly speaking, n-categories are
presheaves on Θn with some additional structure and, as mentioned above, our
version of Berger-Joyal duality allows us to replace a copy of ∆ in the definition of
Θn with a category C. When there is a good choice j : ∆ → C then our definition
admits induction-restriction functors

PSh(∆ ≀ · · · ≀∆ ≀ · · · ≀∆) ⇆ PSh(∆ ≀ · · · ≀ C ≀ · · · ≀∆).

In good cases, these functors can be used to produce operations on higher cate-
gories.

A wreath product involving non-standard C depends on a choice of functor
C → Γ and §5 contains a study of these functors. In Berger’s work, the functor
∆ → Γ keeps track of the edges in the ordered sets [n] = {0 < 1 < 2 < · · · < n},
see Def. 3.3.1, but, as we will see, there are many other examples. Theorem 5.1.3
contains a classification of functors ∆ → Γ. As a corollary Berger’s functor is
characterized as extremal. In Section 5.2, we consider the special case in which
C := ∆G is a crossed simplicial group in the sense of Loday and Fiedorowicz
[FL91].

In our last section we examine the important special case of C := Λ Connes’
cyclic category with preparation towards the sequel [CC25] in which we will in-
troduce a family of trace operations on higher categories.

Notation. We use the symbols = for equality, ∼= for isomorphism in an am-
bient category and ≃ for equivalence in an ambient 2-category. If γ ∈ C/X is an
object of the slice category then the functor γ : A→ X will be denoted by Aγ .

Acknowledgments. Nicholas Cecil was supported by the Erwin and Peggy
Kleinfeld Fellowship and NSF RTG DMS-2038103 grant.

2 Basic definitions

Here we recall the simplex category ∆, the interval category ∇, Segal’s category
of finite sets Γ and Connes’ cyclic category Λ. Then in §2.1, Joyal’s categories Dn
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of finite combinatorial n-disks are reviewed.

Definition 2.0.1. (∆,∇) The simplex category ∆ is the category with objects

[n] := {0 ≤ · · · ≤ n}

and order preserving set maps. The interval category ∇ is the category consisting
of the objects [n] with n > 0 and maps which preserve both the order and the
extrema.

In Joyal’s preprint, a duality between the interval category and the simplicial
category appears. This is a special case of the duality between disks and Θn which
is proven in §4. There is an isomorphism of the form below.

Proposition 2.0.2. ([Joy97, §1.1]) ∆op ∼= ∇

Segal introduced the category Γ in [Seg74, Def. 1.1] as a tool for identifying
infinite loop spaces. Here we recall this category and a few properties.

Definition 2.0.3. (Γ) Segal’s category Γ is the opposite of (the skeleton of) the
category of finite pointed sets FINSETop

∗ .
An explicit description of the skeleton of Γ has objects of the form n := {1, . . . , n}.

A map f : n → l is a set map f : n → P(l) from n to the power set of l such that
distinct elements a ̸= b ∈ n are carried to disjoint subsets f(a) ∩ f(b) = ∅ of l.
The composition of two maps f : n → l and g : l → k is (gf)(a) := ∪b∈f(a)g(b).
The identity map 1n : n → n is a 7→ {a} for a ∈ n. There is an equivalence
P : Γ

∼−→ FINSETop
∗ . On sets A ∈ ob(Γ), P (A) := A ⊔ {∗} and for a map P (f) :

P (B) → P (A)

P (f)(t) :=

{
s t ∈ f(s)

∗ t ̸∈ f(s)

2.1 Finite combinatorial n-disks

In this section we introduce Joyal’s category of combinatorial disks.

Definition 2.1.1. (Dn) An object X in the category Dn of finite combinatorial n-disks
Dn, consists of a collection of sets Xk and set maps sk, tk and pk

X0 X1 X2 · · · Xn

s0

t0

p1

s1

t1

p2

s2

t2

p3

sn−1

tn−1

pn

which satisfy the relations

pksk−1 = 1k−1 = pktk−1, sksk−1 = tksk−1, sktk−1 = tktk−1 for 1 ≤ k ≤ n. (2)

In addition, we require
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(1) X0 = {∗} and s0(∗) ̸= t0(∗)

(2) The equalizer Eq(sk, tk) = sk−1(Xk−1) ∪ tk−1(Xk−1) for 1 ≤ k < n

(3) For each x ∈ Xk, the set p−1
k+1(x) is a finite linearly order set with minimum

sk(x) and maximum tk(x).

A map f : X → Y in Dn is a collection of maps f = {fk : Xk → Yk}nk=0 which
commute with the maps sk, tk and pk and preserve the linear orders.

Motivation 2.1.2. Just as the collection of topological n-simplices determine a func-
tor ∆ → TOP, the collection of topological n-disks

Dn := {x ∈ Rn : |x| ≤ 1}

determine an object

D0 D1 D2 · · · Dn

s0

t0

p1

s1

t1

p2

s2

t2

p3

sn−1

tn−1

pn

There are projections and inclusions

pk : Dk → Dk−1 and sk, tk : Dk → Dk+1.

The projection pk+1(x̂, xk+1) := x̂ maps a vector onto its first k coordinates. The
inclusions are given by sk(x̂) := (x̂,−

√
1− |x̂|2) and tk(x̂) := (x̂,

√
1− |x̂|2). The

relations in Eqn. (2) above are satisfied by these maps.
Remark 2.1.3. Notice that for an interior point x ∈ Dk, the fibre p−1

k+1(x)
∼= [sk(x), tk(x)]

is a non-degenerate interval with endpoints sk(x) and tk(x). On the other hand,
for a boundary point x ∈ ∂Dk, the fibre p−1

k+1(x) is trivial. In the definition of
a finite combinatorial disks, the topological condition that y ∈ Dk is a boundary
point is replaced by the condition that y lies in the images of sk or tk, see condition
(2) in Def. 2.1.1.

3 Wreath products

3.1 Abstract wreath products

We introduce a generalization of Berger’s wreath product which depends on a
functor T : C → C.

Definition 3.1.1. (⊗T ) For a functor T : C → C, the T -wreath product

⊗T : C/T (∗) × C → C

is the pullback Ar ⊗T X := A×T (∗) T (X) in the diagram below.
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Ar ⊗T X T (X)

A T (∗)

π

p T (!X)

r

Here the map !X : X → ∗ is the unique map from X to the terminal object ∗.

Remark 3.1.2. (i) Choosing a different model for the pullback perturbs ⊗T up to
natural isomorphism.

(ii) Replacing T by a functor which is naturally isomorphic to T perturbs the
wreath product ⊗T by natural isomorphism.

(iii) If ϕ : A′ → A is an equivalence then the induced map ϕ∗⊗1X : A′
ϕ∗(r)⊗TX →

Ar ⊗T X is not necessarily an equivalence. However, when C = CAT and
T = Π or T = Πop below the maps T (!X) : T (X) → T (∗) are isofibrations
(Prop. 3.2.2 (2) and Prop. 3.4.1 (3)), which implies that the map ϕ∗⊗ 1X is an
equivalence.

(iv) In our applications, T : CAT → CAT is a 2-functor. This implies that T
preserves equivalences of categories.

The proposition below is the reason for studying dual pairs Π and Πop of
wreath products.

Proposition 3.1.3. Let C be a 2-category and T : C → C is a functor which defines a
wreath product ⊗T . If τ : C → C an automorphism of C and T τ : C → C is the functor
defined by T τ = τTτ−1 then there is a natural isomorphism

τ
(
Ar ⊗T B) ∼= τ(Ar)⊗T τ

τ(B).

Proof. Applying τ to the commutative diagram in Def. 3.1.1 gives the left-hand
side below and then applying the relation τT = T ττ gives the right-hand side.
The result follows from Rmk. 3.1.2 (i) above.

τ(Ar ⊗T X) τT (X)

τ(A) τT (∗)

τ(Ar ⊗T X) T τ (τ(X))

τ(A) T τ (∗)

τ(π)

τ(p) τT (!X)

τ(r)

τ(π)

τ(p) T τ (!τ(X))

τ(r)

6



Inspiration 3.1.1. (Clubs) For a categoryC, the category of endomorphisms [C,C]
is monoidal under composition. If T is a monad then the overcategory [C,C]/T
is also monoidal. When C has pullbacks and T satisfies some conditions, Kelly
showed [Kel92] that this monoidal structure descends to a collection of objects in
[C,C]/T . This is equivalent to C/T (∗) via the evaluation at ∗ map.

3.2 Berger’s wreath product and Θn

In this section, we introduce the wreath productA ≀B := A⊗ΠB by setting T := Π
in the construction from Def. 3.1.1. The product ⊗Π determined by the functor Π
matches the literature, see [Ber07] or [AH14, Rez10, BR20].

Definition 3.2.1. There is a functor Π : CAT → CAT. For any category C, there is
a category Π(C) given by the data below.

(1) An object of Π(C) is a pair (I, a) where I = {1, 2, . . . , n} ∈ Γ is a set and
a : I → ob(C) is a function.

(2) A map f : (I, a) → (J, b) in Π(C) consists of a collection f = (f0, {fji})
where f0 : I → J in Γ and for each i ∈ I and j ∈ f0(i), fji : a(i) → b(j) is a
map in C.

(3) The composition gf : (I, a) → (K, c) of f : (I, a) → (J, b) and g : (J, b) →
(K, c) is given by the pair gf = ((gf)0, {(gf)ki}) with (gf)0 := g0f0 and
(gf)ki := gkjfji where j ∈ f0(i) is the unique element such that k ∈ g0(j).

(4) The identity map 1(I,a) : (I, a) → (I, a) is the map 1(I,a) := (10, 1ji) where 10
is the identity map 10 := 1I on I and 1ii : a(i) → a(i) is the identity map
1ii := 1a(i).

If F : C → D is a functor then there is a functor Π(F ) : Π(C) → Π(D). On
objects Π(F )(I, a) := (I, F (a)). If f = (f0, {fji}) then Π(F )(f) := (f0, {F (fji)}).

The proposition below gives us some basic properties of Π. In particular, (2)
below addresses the isofibration condition mentioned in (iii) of Rmk. 3.1.2.

Proposition 3.2.2. (1) Π(∗) ∼= Γ

(2) If X is a category and !X : X → ∗ is the canonical map then the map Π(!X) :
Π(X) → Π(∗) is an isofibration.

Proof. For (1), since ∗ consists of one object o and End∗(o) = {1o}, there is one
map triv : I → {o}. So the objects of Π(∗) are pairs (I, triv) with I ∈ Γ. A map f :
(I, triv) → (J, triv) is a pair f = (f0, {fji}) where the maps fji : triv(i) → triv(j)
are all required to be identity 1o.
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For (2), isomorphisms in FINSET∗ are permutations so if f : Π(!X)(I, a) → J
is an isomorphism in Γ then #f(s) = 1 is a singleton for all s ∈ I . When j ∈ f(i)

set b(j) := a(i), so there is an isomorphism f̃ : (I, a) → (J, b) which satisfies
Π(!X)(f̃) = f given by f̃ = (f, {fji}) where fji := 1a(i) : a(i) → a(i).

Following Def. 3.1.1, the functor Π leads to a product ⊗Π. The definition
below contains the details.

Definition 3.2.3. (⊗Π or ≀) The wreath product is a 2-functor ⊗Π : CAT/Γ × CAT →
CAT. If X and A are categories and γ : X → Γ is a functor then Xγ ⊗Π A :=
Xγ ×Γ Π(A) is the pullback of the diagram below.

X ⊗Π A Π(A)

X Γ
γ

More concretely, an object of X ⊗Π A is a pair (I, a) where I ∈ X is an object
of X and a : γ(I) → ob(A). A morphism f : (I, a) → (J, b) consists of f0 : I → J
in X and for each i ∈ γ(I) and j ∈ γ(f0)(i) a map fji : a(i) → b(j) in A. This
construction agrees with [Ber07, Def. 3.1], X ≀ A = X ⊗Π A.

Definition 3.2.4. (Segal map) If Xγ ∈ CAT/Γ is an object then the functor γ : X →
Γ is called the Segal map.

3.3 Wreath products of the form ∆ ≀ C
We will now give an account of wreath products of the form ∆ ≀C. First we need
a Segal map γ : ∆ → Γ.

Definition 3.3.1. (γ : ∆ → Γ) For [n] ∈ ∆, let E([n]) := {e1, e2, . . . , en} be the set
of edges ei : i − 1 → i which generate the poset [n] = {0 < 1 < 2 < · · · < n} as a
category. On objects the Segal map is defined by setting γ([n]) := E([n]).

Now notice that, for each ϕ ∈ Hom[n](i, j), there is a subset E(ϕ) ⊆ E([n]) of
edges whose composition is ϕ. If f : [n] → [m] is a map in ∆ and e ∈ E([n]) then
the Segal map is given by γ(f)(e) := E(f(e)) ⊆ γ([m]).

Following Def. 3.2.3, the wreath product ∆ ≀C is a category with objects ([n], c)
where the map c : E([n]) → ob(C) labels each edge of [n] by an object ci :=
c(i− 1 → i) of C.

0 1 · · · n
c1 c2 cn
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A map f : ([n], c) → ([m], d) consists of a map f0 : [n] → [m] in ∆ together
with maps {fji : c(i) → d(j)}j∈f0(i) in C. The diagram below is a picture of a map
f : ([3], c) → ([4], d)

0 1 2 3

0 1 2 3 4

c1 c2 c3

d1 d2 d3 d4

f1,1 f2,3 f3,3

where the vertical solid arrow depicts the morphism f0 in ∆ and the fj,i are mor-
phisms in C. When maps are illustrated in this way, their composition is given
by stacking the diagrams and composing those interfacing constituents.

Lastly, we use the wreath product to define Θn below.

Definition 3.3.2. (Θn) Θ1 := ∆ and Θn := ∆ ≀Θn−1 for n > 1.

3.4 Combinatorial disks as wreath products

Following Prop. 3.1.3, there is a conjugate functor

Πop(C) := Π(Cop)op (3)

of Π with respect to the automorphism −op : CAT → CAT. Thm. 3.4.6 below
is the opposite ∇ ⊗Πop Dn ≃ Dn+1 of Berger’s Θn recursion in Def. 3.3.2 above.
Before the proving this theorem, the functor Πop is discussed in more detail.

If (A, ∗) is a pointed set then let A\∗ ⊂ A be the result removing the basepoint
from the set A.

Proposition 3.4.1. (1) For a category C, the category Πop(C) from Eqn. (3) has ob-
jects pairs (I, a) with I ∈ Γop and a : I\∗ → ob(C).

• A map f : (I, a) → (J, b) is a pair f = (f0, fji) where f0 : I → J in Γop for
each i ∈ I such that j = f0(i) ∈ J\∗, a map fji : a(i) → b(j) in C.

• If f : (I, a) → (J, b) and g : (J, b) → (K, c) then gf is given by (gf)0 = g0f0
and (gf)ki = gkjfji where k = g0(j) and j = f0(i).

(2) Πop(∗) ∼= Γop

(3) If X is a category and !X : X → ∗ is the canonical map then the map Π(!X) :
Πop(X) → Πop(∗) is an isofibration.

Proof. Statement (1) comes from unwinding the definitions, while statements (2)
and (3) follow from Prop. 3.2.2 and the involution −op : CAT → CAT. In more
detail,
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(2) Πop(∗) = (Π(∗op))op = (Π(∗))op = Γop

(3) By Prop. 3.2.2, Π(!Xop) : Π(Xop) → Γ is an isofibration and −op automor-
phism implies Π(!Xop)op : (Π(Xop))op → Γop = Πop(X) → Πop(∗) is an isofi-
bration.

Remark 3.4.2. Berger showed that Π(C) as the result of freely closing C under
finite products and adding a zero object [Ber07, Lem 3.2]. So the category Πop(C)
can be thought of as freely closing C under finite coproducts and adding a zero
object. If a : I\∗ → ob(C) identifies a family of objects in C then (I, a) ∈ Πop(C)
is their coproduct.

If Xω ∈ CAT/Γ is an object then ω : X → Γop is called the coSegal map. We will
write X ⊗Πop

A instead of Xω ⊗Πop
A when it is unambiguous. More unwinding

of definitions above produces the definition below.

Definition 3.4.3. The dual wreath product Xω ⊗Πop
A := Xω ×Γop A is the category

with objects given by pairs (x, a) where x ∈ X and a : ω(x)\∗ → ob(A) is a
function.

• A map f : (x, a) → (y, b) is a pair (f0, {fji}) where f0 : x → y is a map in
X and, for each i ∈ ω(x)\∗ such that ω(f0)(i) = j ∈ ω(y)\∗, there is a map
fji : a(i) → b(j) in A.

Remark 3.4.4. We have found two instances of the cowreath product in the lit-
erature. For a category C, Borceux introduced a construction SET(C), the finite
analogue FINSET(C) is the cowreath product FINSET ⊗Πop

C where the coSegal
functor −+ : FINSET → FINSET∗ freely adjoints a basepoint, see [Bor94, Ch. 8].
Lurie uses a category ∆S = ∆ω ⊗Πop

S where S is a set and the coSegal functor
ω : ∆ → FINSET is given by ω([n]) := {0, . . . , n}, see [Lur09, Def. 2.1.1].

Proposition 3.4.5. If γ : ∆ → Γ is the Segal functor from Def. 3.3.1 then the coSegal
functor γop : ∆op → Γop admits a description as ω : ∇ → FINSET∗ below under the
identifications in Prop. 2.0.2 and Def. 2.0.3.

• If [n] ∈ ∇ then ω([n]) := ({1, 2, . . . , n − 1, ∗}, {∗}) is the set of non-extreme
points.

• If f : [n] → [m] is a map of intervals then ω(f) : ω([n]) → ω([m]) in FINSET∗

ω(f)(i) :=

{
f(i) if f(i) ̸∈ {0,m}
∗ if f(i) ∈ {0,m}

10



The coSegal map ω : ∇ → Γop allows us to introduce a cowreath product
∇ ⊗Πop

X for any category X . The theorem below shows that Joyal’s disk cate-
gories from Def. 2.1.1 admit an inductive definition in terms of this product.

Theorem 3.4.6. The disk category is an iterated wreath product,

∇ ≃ D1 (4)

∇ω ⊗Πop Dn ≃ Dn+1. (5)

Proof. For the base case Eqn. (4), by Def. 2.1.1 an object X ∈ D1 is a diagram

{∗} X1

s0

t0

p1

such that p−1
1 (∗) = X1 = {s0(∗) ≤ 1 ≤ 2 ≤ · · · ≤ t0(∗)} is a finite linearly

ordered set with minimum s0(∗) and maximum t0(∗). A map f : X → Y in D1

is determined by the order and endpoint preserving map f1 : X1 → Y1. As ∇
is skeleton of the category of finite linearly ordered sets with order and extrema
preserving maps, the functor f : D1 → ∇ determined by the assignment f(X) :=
[#X1] is an equivalence of categories.

Now for the induction Eqn. (5), there is a functor

Φ : Dn+1 → ∇ω ⊗Πop Dn given by Φ(X) := (X1, a) (6)

where a(i) := τ iX ∈ ob(Dn) assigns to each i ∈ ω(X1) (i ∈ X1 and i non-extreme)
an n-disk τ iX .

We now check that the definition of Φ makes sense. Recall that an (n+1)-disk
X ∈ Dn+1 is determined by a collection of data

X0 X1 X2 · · · Xn Xn+1

s0

t0

p1

s1

t1

p2

s2

t2

p3

sn−1

tn−1

pn

sn−1

tn

pn+1

satisfying the added conditions in Def. 2.1.1. As before, X1 ∈ ∇ is an interval.
For each non-extreme element i ∈ X1, an n-disk τ iX can be extracted from the
(n+ 1)-disk X by setting

τ iX0 := {i} and τ iXk := p−1
k+1(τ

iXk−1) for 0 < k ≤ n

in the diagram below.

τ iX0 τ iX1 τ iX2 · · · τ iXn

X1 X2 X3 Xn+1

si0

ti0

⊆

pi1

si1

ti1

⊆

pi2

si2

ti2

⊆

pi3

sin−1

tin−1

pin

⊆

11



The structure maps pik : τ iXk → τ iXk−1 and sik, t
i
k : τ iXk → τ iXk+1 are given by

restricting those of X : pik := pk+1|τ iXk
, sik := sk+1|τ iXk

and tik := tk+1|τ iXk
. The

relations in Eqn. (2) of Def. 2.1.1 hold for these assignments because they hold
for those of X . By definition #τ iX0 = #{i} = 1, conditions (1), (2) and (3) in Def.
2.1.1 are addressed as follows:

(1) Since s1(x) = t1(x) ⇔ x ∈ s0(∗) ∪ t0(∗), Eq(si0, ti0) ⊂ Eq(s1, t1) = ∅ because
i ∈ X1 is an not extreme point.

(2) Eq(sik, t
i
k) = {x ∈ τ iXk : sik(x) = tik(x)} = τ iXk ∩ {x ∈ Xk+1 : sk+1(x) =

tk+1(x)} = τ iXk ∩ (sk(Xk) ∪ tk(Xk)) = sik−1(τ
iXk−1) ∪ tik−1(τ

iXk−1)

(3) If x ∈ τ iXk−1 ⊂ Xk then (pik)
−1(x) = p−1

k+1(x) = {sk(x) ≤ 1 ≤ · · · ≤ tk(x)} =
{sik−1(x) ≤ 1 ≤ · · · ≤ tik−1(x)}.

Now if f : X → Y is a map of combinatorial (n + 1)-disks then by Def. 2.1.1
f = {fk : Xk → Yk}n+1

k=0 is a collection of maps which commute with the structure
maps sk, tk, pk of X and fk : p−1

k+1(x) → p−1
k+1(fk(x)) preserves the linear order

for all 0 ≤ k ≤ n + 1 and for all x ∈ Xk. So that for each i ∈ ω(X1) such that
f1(i) = j ∈ ω(Y1), there is a restriction τ jif := {fk|τ iX}nk=0 : τ iX → τ jY . This
restriction is functorial, if f : X → Y and g : Y → Z are maps of (n + 1)-disks
such that f1(i) = j ∈ ω(Y1) and g1(j) = k ∈ ω(Z1) then τ ki(gf) = τ kj(g)τ ji(f).

So we conclude that Eqn. (6) defines a functor Φ : Dn+1 → ∇ ⊗Πop Dn which
assigns to (n+1)-disks X , Φ(X) := (X1, a) and maps f : X → Y between (n+1)-
disks Φ(f) := (Φ(f)0, {Φ(f)ji}) where Φ(f)0 := f1 and Φ(f)ji := τ jif .

To show that Φ is an equivalence of categories, we prove (1) Φ is fully faithful
and (2) Φ is essentially surjective.

(1) Φ is fully faithful. There are mutually inverse maps

α : HomDn+1(X, Y ) ⇆ Hom∇⊗ΠopDn
((X1, a), (Y1, b)) : β

between sets of morphisms. For α, α(f) := Φ(f) = (Φ(f)0,Φ(f)ji) =
(f1, {τ jif}) as discussed above. For β, if g : (X1, a) → (Y1, b) then g =
(g0, {gji}), so β(g) : X → Y is defined by β(g) := {β(g)k : Xk → Yk}n+1

k=0

where β(g)0(∗) := ∗, β(g)1 := g0 and, for k ≥ 2, the map β(g)k : Xk → Yk is
defined by β(g)k(x) := (gji)k−1(x) for x ∈ τ iXk−1 (sinceXk = ⊔i∈ω(X1)τ

iXk−1).

On one hand, the composition αβ(g) = α(1∗, β(g)0, {β(g)k}∞k=2) = (g1, {τ jiβ(g)k}) =
g so that αβ = 1. On the other hand, the composition βα(f) = βΦ(f) =
β(f0, {τ jif}) = (1∗, β(Φ(f))1, {β(Φ(f))k}∞k=2) where β(Φ(f))1 = f1 and β(Φ(f))k(x) =
(τ jif)k−1(x) = fk(x) when x ∈ τ iXk−1, again since Xk = ⊔i∈ω(X1)τ

iXk−1,
β(Φ(f))k = fk so that βα = 1.
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(2) Φ is essentially surjective. Suppose that X ∈ Dn+1 is an (n + 1)-disk. Then
there is an equivalence ϕ : X1

∼−→ [ℓ] for some ℓ ∈ Z≥0. By setting ϕ0 := ϕ and
ϕϕ(i)i := 1τ iX : τ iX → τϕ(i)X , this extends to an equivalence ϕ̃ := (ϕ0, ϕji) :

(X1, a)
∼−→ ([ℓ], ã) where ã(i) := τ iX for i ∈ ω([ℓ]) = {1, 2, . . . , ℓ− 1}.

4 Berger-Joyal duality

With the notation for both the wreath product X ≀ A = X ⊗Π A and the cowreath
product Y ⊗Πop

B in mind, the statement of Prop. 3.1.3 becomes the corollary
below.

Corollary 4.0.1. For Xγ ∈ CAT/Γ and any category A, there is a natural isomorphism

(Xγ ⊗Π A)op ∼= X
op
γop ⊗Πop

Aop

We now have everything that we need to reprove Berger-Joyal duality.

Theorem 4.0.2. For each n ∈ Z≥1, there is equivalence Θop
n ≃ Dn.

Proof. The proof is by induction. When n = 1, there is an equivalence D1 ≃ ∇ by
Thm. 3.4.6 so that D1 ≃ ∆op by Prop. 2.0.2. Now assuming that Θop

n ≃ Dn,

Θ
op
n+1 = (∆ ≀Θn)

op (Def. 3.3.2)
∼= ∆

op
γop ⊗Πop

Θop
n (Cor. 4.0.1)

≃ ∆
op
γop ⊗Πop Dn (Induction)

≃ ∇ω ⊗Πop Dn (Prop. 3.4.5, Rmk. 3.1.2(iii))
≃ Dn+1 (Thm. 3.4.6)

Other perspectives on Berger-Joyal duality can be found in the references
[MZ01] and [Our10].

5 Segal functors for locally finite categories

In order to apply the Berger-Joyal duality Theorem 4.0.2 in new settings, it is nec-
essary to view categories C as categories C → Γ over Γ. Thm. 5.1.3 classifies
analogues of Berger’s Segal functor so that when C is arbitrary, this allows us to
motivate the introduction of other Segal functors. In the second part of this sec-
tion we will give some examples of Segal functors for crossed simplicial groups
∆G. A crossed simplicial group ∆G is a category C which a extension of ∆ by a
collection of groups.
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5.1 A characterization of Berger’s Segal functor

We would like to understand Segal functors C → Γ and our problem is that there
are too many of them. Recall that a sieve S of an object x ∈ C is a subfunctor
S ⊆ Yx of the Yoneda functor

Yx(y) := HomC(y, x). (7)

If C is locally finite then every sieve S determines a functor Sop : C → Γ because
S : Cop → FINSET. This does not use the added basepoint ∗ in a non-trivial
way (as in Berger’s Def. 3.3.1). What we really want is Segal functors which
are “like Berger’s Segal functor.” To achieve this Prop. 5.1.2 constructs Berger’s
Segal functor from a sieve and Thm. 5.1.3 classifies sieves on ∆. Combining these
results shows that Berger’s Segal functor arises from the largest proper sieve.

Construction 5.1.1. If F : C → FINSET is a functor and S ⊆ F a subfunctor then
there is a quotient functor F/S : C → FINSET∗ defined as follows.

The functor F/S : C → FINSET∗ is defined on objects x ∈ C by (F/S)(x) :=
(F (x)\S(x))⊔{∗}. If f : x→ y is a map inC then (F/S)(f) : (F/S)(x) → (F/S)(y)
is the map given by

(F/S)(f)(t) := F (f)(t) when t ∈ F (x) and F (f)(t) ∈ (F/S)(y)

and (F/S)(f)(t) := ∗ otherwise.

For a sieve S on an object x ∈ C, this construction gives a functor Yx/S : Cop →
FINSET∗ and so determines a functor (Yx/S)op : C → Γ as discussed above.

Next Prop. 5.1.2 checks that Berger’s Segal functor from Def. 3.3.1 is obtained
by the construction in Const. 5.1.1.

In order to state the proposition below we compose Berger’s Segal functor
γ : ∆ → Γ with the equivalence P : Γ

∼−→ FINSETop
∗ from Def. 2.0.3 above, this

gives a functor
γ′ := γ ◦ P : ∆ → FINSETop

∗ . (8)

on objects [n], γ′([n]) = E([n])+ consists of the edges of [n] and the basepoint ∗.
For a map f : [n] → [m] in ∆, γ′(f) : γ′([m]) → γ′([n]) maps each t ∈ E(f(e)) to
e ∈ E([n])+ for each edge e ∈ E([n]).

Proposition 5.1.2. If S ⊆ Y[1] is the sieve on [1] ∈ ∆ consisting of constant functions
(or non-surjective functions) then there is an isomorphism

Y[1]/S
∼−→ γ′

between the quotient construction above and Berger’s Segal functor γ′ from Eqn. (8).
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Proof. In order to prove the proposition we construct a natural transformation

p =
{
p : (Y[1]/S)([n])

∼−→ γ′([n])
}

[n]∈ob(∆)

Since there is one edge e1 ∈ γ([1]) and for each edge e ∈ γ([n]), there is a unique
surjection pe : [n] → [1] such that pe(e) := e1, we introduce maps, p : γ′([n]) →
(Y[1]/S)([n]) where

p(e) := pe and p(∗) := ∗.

Each map p is a bijection because the right-hand side consists of non-constant
maps [n] → [1], (Y[1]/S)([n]) = Hom∆([n], [1])\S([n]) by Construction 5.1.1 and
every surjective map [n] → [1] in the category ∆ is equal to pe for some e ∈ γ([n]).

To see that p is natural, for each map f : [n] → [m] in ∆, we claim that the
diagram below commutes, i.e. f ∗ ◦ p = p ◦ γ′(f).

γ′([m]) (Y[1]/S)([m])

γ′([n]) (Y[1]/S)([n])

p

γ′(f) f∗

p

On one hand, if γ′(t) = e then pγ′(t) = pe. On the other hand, p(t) = pt : [m] → [1]

and f ∗(p(t)) = pt : [n]
f−→ [m] → [1].

As noted above, any sieve S ⊆ Y[1] determines a Segal functor (Y[1]/S)op : ∆ →
Γ. The theorem below shows that sieves of the form S ⊆ Y[n] are determined by
their images.

Theorem 5.1.3. Let I := {S ⊆ Y[n] : S is a sieve on [n]} and let

S := {S ⊆ P([n]) : (A ∈ S and B ⊆ A) ⇒ B ∈ S}

be the set of subsets of [n] = {0, 1, . . . , n} which are closed under subsets. Then there are
mutually inverse maps

Φ : S ⇆ I : Ψ

which are determined by the assignments

Φ(S)([k]) := {f ∈ Hom∆([k], [n]) : im(f) ∈ S} and
Ψ(I) := {S : S = im(f) for some f ∈ I([k])}.

Proof. The proof consists of four steps. First we show that for S ∈ S, Φ(S) ⊆ Y[n]
is a sieve on [n]. Then we check that for I ∈ I, Ψ(I) ∈ S. Lastly, we compute that
ΨΦ = 1S and ΦΨ = 1I respectively.
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Step 1: If S ∈ S then Φ(S) is a sieve. Since Φ(S)([k]) ⊆ Y[n], suppose f :
[k] → [ℓ] then Φ(f) : Φ(S)([ℓ]) → Φ(S)[k] is pullback g 7→ g ◦ f . Φ is closed under
pullback because if im(g) ∈ S and im(g ◦ f) ⊆ im(g) then im(g ◦ f) ∈ S.

Step 2: If I ∈ I then Ψ(I) ∈ S. Suppose that A ∈ Ψ(I) and B ⊆ A. Since
A ∈ Ψ(I) there is an f : [k] → [n] such that A = im(f). If j := #f−1(B) then there
is a map g : [j] → [k] in ∆ with im(g) = B and f ◦ g ∈ I because I is a sieve. So
B ∈ Ψ(I) and Ψ(I) ∈ S.

Step 3: ΨΦ = 1S . For S ∈ S,

Ψ(Φ(S)) = {S : S = im(f) for some f ∈ Φ(S)([k])}
= {S : S = im(f) for some f : [k] → [n] such that im(f) ∈ S}
= S

Step 4: ΦΨ = 1I . For I ∈ I,

Φ(Ψ(I))([k]) = {f ∈ Hom∆([k], [n]) : im(f) ∈ Ψ(I)}
= {f ∈ Hom∆([k], [n]) : im(f) ∈ {S : S = im(g) for some g ∈ I([k])}}
= I([k])

The following characterization of Berger’s Segal functor γ : ∆ → Γ from Def.
3.3.1 above follows from combining the classification Thm. 5.1.3 above with Prop
5.1.2.

Corollary 5.1.4. The sieve S ⊆ Y[1] consisting of constant functions [n] → [1] corre-
sponds to Berger’s Segal functor for ∆. S is the largest proper sieve.

Proof. Using the previous theorem, Ψ(S) = {∅, {0}, {1}}. The only larger sieve
corresponds to Ψ(S)∪{{0, 1}} which is equal to all of P([1]) and so not proper.

5.2 Segal functors for crossed simplicial groups

In this section we will apply some of our ideas to crossed simplicial groups
∆G. The categories ∆G were introduced by Fiedorowicz and Loday [FL91] and
Krasauskas [Kra87]. A crossed simplicial group is an extension of the simplicial
category ∆ by a groupoid in which the composition is required be of a particu-
larly simple form. For us these categories constitute a concrete family of exam-
ples, at least some of which, appear in practice.

Definition 5.2.1. (∆G) A crossed simplicial group ∆G is a category equipped with
a functor i : ∆ → ∆G such that

(1) i is bijective on objects.
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(2) Every map f : [m] → [n] in ∆G a unique factorization of the form f = ϕg
where ϕ is in the image of i and g is an automorphism of [m].

If we set Gn := Aut∆G([n]) then the collection G := {Gn}∞n=0 forms a simplicial
set. A crossed simplicial group ∆G is an extension of the simplicial category by
this collection of groups. The unique factorization property ensures that for each
map ϕ : [m] → [n] in ∆ and g ∈ Gn there are maps

ϕ∗ : Gn → Gm and g∗ : Hom∆G([m], [n]) → Hom∆G([m], [n])

so that the composition gϕ can be rearranged to g∗(ϕ)ϕ
∗(g). In particular, since

any two maps can be written ϕg and ϕ′g′ their composition in ∆G can be de-
scribed by

(ϕg) ◦∆G (ϕ′g′) = (ϕ ◦∆ g∗(ϕ′))(ϕ′∗(g) ◦G∗ g). (9)

a composition in ∆ and G∗ respectively.
Example 5.2.2. When Gn = {1} for all n ≥ 0 the associated crossed simplicial
group ∆G = ∆ is the simplicial category.
Example 5.2.3. Connes’ cyclic category Λ is a crossed simplicial group with Gn =
Z/(n+1). If the set [n] = {0, 1, . . . , n} is viewed as the (n+1)-roots of unity in the
unit circle S1 ⊂ C then a map f : [n] → [m] in Λ is a homotopy class of degree 1
map f : (S1, [n]) → (S1, [m]).

A combinatorial definition is given using the categories ⟨n⟩ = {0 < 1 < · · · <
n < 0} generated by the graphs below

1
. . .

0 n

If ωi : i→ i is the unique map of degree one then a functor F : ⟨n⟩ → ⟨m⟩ is called
degree one when F (ωi) = ωF (i) for all i ∈ ⟨n⟩. Connes’ cyclic category Λ ⊂ CAT
is equivalent to the subcategory whose objects are ⟨n⟩ and whose morphisms are
the degree one functors.
Example 5.2.4. The paracyclic crossed simplicial group Λ∞ has structure groups
Gn = Z. If Λ∞ is the category consisting an object ñ := Z with the standard order
for each non-negative integer n then

HomΛ∞(ñ, m̃) := {f : Z → Z | f(l +m+ 1) = f(l) + n+ 1}

Alternatively, if Z = ⟨tn+1⟩ then ∆Z has a presentation with relations

tn+1δi = δi−1tn for 1 ≤ i ≤ n and tn+1δ0 = δn,

tn+1σi = σi+1tn+2 for 1 ≤ i ≤ n and tn+1σ0 = σnt
2
n+2.

The cyclic category is equivalent to the quotient Λ ∼= Λ∞/⟨tn+1
n+1 = 1[n] : n ∈ Z≥0⟩.
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Example 5.2.5. There is a crossed simplicial group ∆Z/2 with the same objects as
∆, ob(∆Z/2) := {0 < 1 < · · · < n} and set maps of the form

f : [n] → [m] or f ∗ : [n] → [m]

so that
Hom∆Z/2([n], [m]) = Hom∆([n], [m]) ⊔ Hom∆([n], [m])∗

such that f preserve the order and f ∗ preserve the opposite order. There is a
special map yn+1 := 1∗ : [n] → [n] generating a group Z/2 which can be thought
of as order reversing,

yn+1 ·{0 < 1 < 2 < · · · < n} := {0 > 1 > 2 > · · · > n} = {n < n−1 < · · · < 1 < 0}.

On maps Hom∆([n], [m])∗ = Hom∆([n], [m]) · yn+1. These generators yn+1 satisfy
relations

yn+1δi = δn−iyn and yn+1σi = σn−iyn+2

If ∆G is a crossed simplicial group then let

Y G
[n]([k]) := Hom∆G([k], [n]) where Y G

[n] : ∆G
op → FINSET (10)

be the Yoneda functor on [n] in ∆G (compare to Eqn. (7)). As in §5, by adding
basepoints, any sieve S ⊆ Y G

[n] gives a functor Y G
[n]/S : ∆G → FINSET∗ so that

(Y G
[n]/S)

op : ∆G → Γ is a candidate Segal functor. In the proposition below we
classify sieves of Y G

[n] in terms of sieves on Y[n] since the latter is the content of
Thm. 5.1.3 this proposition gives a classification of sieves of [n] in ∆G.

Proposition 5.2.6. Suppose that S ⊆ Y[n] is a sieve. If Y G
[n] is the Yoneda functor in Eqn.

(10) above then there is a sieve SG ⊆ Y G
[n] which consisting of maps ζ ∈ ∆G which factor

as ζ = ϕg with g ∈ Gk and ϕ ∈ S([k]). Moreover, all sieves of [n] in ∆G arise in this
way.

Proof. First we prove that SG is a sieve. It suffices to show that if ξ : [ℓ] → [k] is a
map ξ ∈ ∆G then the image of ξ∗ : SG([k]) → Y G([ℓ]) is contained in the subset
SG([ℓ]). Fix a map ξ : [ℓ] → [k] in ∆G and let ζ ∈ SG([k]). The map ξ factors as
ξ = ψh and the map ζ factors as ζ = ϕg. Now, as in Eqn. (9), the pullback factors
as

ξ∗(ζ) = ζξ = (ϕ ◦ g∗ψ) ◦ (ψ∗g ◦ h).

Since S is a sieve on [n] implies that ϕ ◦ g∗ψ ∈ S([ℓ]). So by definition, ζξ ∈ SG.
Conversely, suppose that TG ⊆ Y G

[n] is an arbitrary sieve. Define T∆ to be those
elements in T which are morphisms in ∆. As i : ∆ → ∆G is faithful, T∆ is a sieve
on [n] in ∆.
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We claim that (T∆)G ⊆ TG. To see this, fix f ∈ (T∆)G. Factor f = ϕg with g
an automorphisms and ϕ in ∆. By definition, ϕ ∈ T∆ ⊆ TG. Thus, since TG is a
sieve, we have f = ϕg ∈ TG.

On the other hand, since (T∆)G is a sieve, we have TG ⊆ (T∆)G. Since TG =
(T∆)G all sieves ∆G arise in this way.

Remark 5.2.7. If S is a sieve on [n] ∈ ∆ then SG ∼= i!S. If SG is a sieve on [n] ∈ ∆G
then S∆ is not i∗SG.

Example 5.2.8. Recall from Corollary 5.1.4 that Berger’s sieve is the largest proper
sieve.

(1) There is a Segal functor on the constant Z/2 crossed simplicial category
γ∆Z/2 : ∆Z/2 → Γ which is defined by the quotient γop∆Z/2 := Y

Z/2
[1] /B where

B consists of constant maps {0} and {1}.

(2) There is a Segal functor on the cyclic category γΛ : Λ → Γ which is defined
by the quotient γopΛ := Y⟨0⟩/B. In this case, there is only one vertex and
B = ∅.

Remark 5.2.9. Example 5.2.8 showcases an interesting phenomenon. Following
Ex. 5.2.5 ∆Z/2 consists of two directed graphs the Segal functor γ∆Z/2 in (1) above
extends γ : ∆ → Γ by using these extra edges.

Remark 5.2.10. The opposite of (2) agrees with a cyclic analogue of the Segal func-
tor for ∆ in Def. 3.3.1. Let E(⟨n⟩) be the edges of the graph that generates ⟨n⟩
pictured above. If ϕ ∈ ⟨n⟩ is a map then write E(ϕ) ⊆ E(⟨n⟩) for the set of el-
ements whose composite is ϕ. The functor γΛ : Λ → Γ is γΛ(⟨n⟩) := E(⟨n⟩) on
objects. For a map f : ⟨n⟩ → ⟨m⟩ and e ∈ E(⟨n⟩), set γΛ(f)(e) := E(f(e)).

Remark 5.2.11. In a different direction, for any diagram i : ∆ → C then we could
define the Segal functor γC : C → Γ to be the left Kan extension γC := Laniγ. It
can be shown that this also agrees with the Segal functor for Λ in (2) above.

Once a Segal functor γG has been chosen, there is a Berger-Joyal duality for
n-fold products of crossed simplicial groups.

Corollary 5.2.12. If ∆G1,∆G2, . . . ,∆Gn are crossed simplicial groups equipped with
functors ∆Gi → Γ then there is an equivalence of categories

∆G1 ⊗Π ∆G2 ⊗Π · · · ⊗Π ∆Gn
∼= ∆G

op
1 ⊗Πop

∆G
op
2 ⊗Πop · · · ⊗Πop

∆Gop
n
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