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These notes are a meant as a quick review of some basic concepts of group theory. Citations are provided to
help a reader find more details in Dummit and Foote’s Abstract Algebra [DF03] or Lang’s Algebra [Lan02].
Specific citations will use the format [REFERENCE].Location; e.g. [DF03].3.3 refers to the third section of
Chapter 3 in Dummit and Foote.

1 Groups and 4 Examples
In this section, we define groups and provide 5 examples which we will follow throughout these notes.

Definition 1.0.1 Group, [DF03].1.1, [Lan02]I.2
A group (G, ·) is a set G paired with a function · : G × G → G satisfying the following:

(i) (Associativity) For all g, h, k ∈ G there holds (g · h) · k = g · (h · k).

(ii) (Identity) There exists an element e ∈ G such that for all g ∈ G there holds e · g = g = g · e.

(iii) (Inverses) For all elements g ∈ G there is an element g−1 ∈ G such that g−1 · g = e = g · g−1.

We say that a group is Abelian when the operation · is associative, i.e. when for all g, h ∈ G there
holds g · h = h · g.

Notation We will often drop the group operation from our notation. That is, if G ∋ g, h is a group, we
write g · h = gh. When a group is Abelian, it is customary to write the group operation as + instead of
·. When additive notation is in use, the inverse of g is written −g and not g−1 and the identity element is
written as 0.
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Discussion There is an interesting point here about how much of a group is structure (something extra
put on a set, e.g. the group operation ·) and how much is property (something which is true about a set or
structure, e.g. identities and inverses exist). On its face, we could get a different thing by saying a group
is an ordered quadruple (G, ·, eH , (−)−1) where we specify identity and inverse as structure. Fortunately,
in this context, there is no difference between group-as-pair and group-as-quadruple as the following lemma
attests.

Lemma 1.0.2 Uniqueness of Identity and Inverse
Fix a group G and element g ∈ G. Let e ∈ G be some element satisfying the identity axiom. Let
g−1 ∈ G be an inverse for g.

(i) If h ∈ G satisfies gh = g or hg = g, then h = e.

(ii) If h ∈ G satisfies gh = e or hg = e, then h = g−1.

Proof. Consider (i). Assuming that gh = g, we get

h = e · h = g−1g · h = g−1 · gh = g−1 · g = e

and the other case is similar.

Consider (ii). Assuming gh = e, we have

g−1 = g−1 · e = g−1 · gh = e · h = h

and the other case is similar. QED

Given some sort of mathematical object manifesting as a structure on an underlying set (think vector spaces,
topological spaces) it is fruitful to study those set maps between the underlying sets which preserve the
structure (think linear map, continuous map). This is no less true for groups.

Definition 1.0.3 Group Homomorphism, [DF03].1.6, [Lan02]I.2
If G and H are groups, a function f : G → H is called a group homomorphism or just a homo-
morphism when for g, h ∈ G there holds f(gh) = f(g)f(h).

The other parts of being a group, having an identity element and inverses, are also preserved by homomor-
phisms:

Lemma 1.0.4 Preservation of Identity and Inverse
If f : G → H is a group homomorphism,

(i) there holds f(eG) = eH , and

(ii) for all g ∈ G there holds f(g−1) = [f(g)]−1.

Proof. Consider (i). Observe that f(eG)f(eG) = f(eGeG) = f(eG). By uniqueness of identity, f(eG) = eH .

Consider (ii). Observe that f(g−1)f(g) = f(g−1g) = f(eG) = eH . By uniqueness of inverses, f(g−1) =
[f(g)]−1. QED

Definition 1.0.5 Isomorphism
A group homomorphism f : G → H is called an isomorphism when there is a group homomorphism
f ′ : H → G such that ff ′ = 1H and f ′f = 1G.

We can describe group isomorphisms in another way.

Lemma 1.0.6 Isomorphism Detection
A group homomorphism f : G → H is an isomorphism if and only if it is a bijection.
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Proof. Certainly and isomorphism is a bijection; the definition requires the existence of an inverse. For the
converse, let f : G → H be a bijective group homomorphism. Let f−1 : H → G be its inverse function. We
need only show that f−1 is a group homomorphism. To this end, let h, h′ ∈ H. We have

f−1(h)f−1(h′) = f−1f(f−1(h)f−1(h′))
= f−1(ff−1(h)ff−1(h′))
= f−1(hh′)

as desired. QED

Notation When G and H are groups and there is a group isomorphism G → H, we say that G and H are
isomorphic and write G ∼= H.

1.1 Example I: Z, The Integers
The integers Z along with ordinary addition + form an Abelian group.

Warning The integers do not form a group under multiplication; there is a multiplicative identity 1, but
not every integer has a multiplicative inverse.

We recall the following crucial theorem about the integers.

Theorem 1.1.1 Division, [DF03].0.2
For any integers a, b there exists unique q ∈ Z and r ∈ {0, ..., |b| − 1} such that

a = bq + r.

In this context we call q the quotient and r the remainder when a is divided by b.

Remark In abstract language, this says that Z is a Euclidean domain, c.f. [DF03].8.1.

1.2 Example II: Zn, The Integers Modulo n

Definition 1.2.1 Zn, [DF03].0.3
Fix a natural number n ∈ Z>0. Define an equivalence relation ∼n on Z by writing a ∼n b when
n divides a − b. We write [a]n for the equivalence class of a under ∼n. We write Zn for the set of
equivalence classes; that is

Zn = {[a]n : a ∈ Z}.

There is a function + : Zn × Zn → Zn satisfying

[a]n + [b]n = [a + b]n

for all integers a, b ∈ Z. With this, (Zn, +) is an Abelian group.

Discussion On could, and probably should, complain that this definition contains the unproven assertion
that the function + actually exists. Once this is believed, verifying the group axioms is easy. For instance,
if a, b, c ∈ Z we have

([a]n + [b]n) + [c]n = [a + b]n + [c]n
= [(a + b) + c]n
= [a + (b + c)]n (Z is a group)
= [a]n + ([b]n + [c]n)
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so that addition is associative. We will now prove that + exists.

Lemma 1.2.2 Well Definition of Modular Addition
There is a function + : Zn × Zn → Zn satisfying

[a]n + [b]n = [a + b]n

for all integers a, b ∈ Z.

Proof. The only obstruction to the property

[a]n + [b]n = [a + b]n

being a definition is that there may be a, a′, b, b′ ∈ Z so that [a]n = [a′]n and [b]n = [b′]n so that [a + b]n ̸=
[b + b′]n. We will show that this obstruction cannot occur. Indeed, fix a, a′, b, b′ ∈ Z. Suppose [a]n = [a′]n
and [b]n = [b′]n. By definition, there is k, k′ ∈ Z such that kn = a − a′ and k′n = b − b′. But then
(k + k′)n = (a + b) − (a′ + b′) so that [a + b]n = [a′ + b′]n and the obstruction does not occur. QED

1.3 Example: Sn The Symmetric Group

Definition 1.3.1 Symmetric Group, [DF03].1.3
Let A be a set. An automorphism or symmetry or permutation of A is a bijection A → A. The
set of all bijection is written as Aut(A) or as SA. If A = {1, ..., n} we use the notation Sn = SA.
Ordinary function composition ◦ makes (SA, ◦) into a group.

Cycle Notation Suppose that A is some finite set. There is a convenient notation for elements of SA

called cycle notation. If a0, ..., an ∈ A, one write

σ = (an · · · a2 a1 a0)

for that permutation which carries a0 to a1 and a1 to a2 and so on up to an−1 to an and an to a0. Any
element of A not written in the cycle is fixed by σ. On calls σ an n-cycle.

Example In S3, there is the cycle σ = (1 2). This is the symmetry σ : {1, 2, 3} → {1, 2, 3} given by

σ(1) = 2 σ(2) = 1 σ(3) = 3.

Definition 1.3.2 σ-Orbit
Let A be a set. If a, b ∈ A and σ ∈ SA, we say that a, b are in the same orbit of σ when there is an
integer k such that σk(a) = b. We say that σ is a cycle when it has at most one non-singleton orbit.

Explanation When A is finite, the cycles σ are exactly those permutations which can be written as

σ = (an · · · a2 a1 a0).

Proposition 1.3.3 Cyclic Decomposition
If A is a finite set, every element of SA may be written as a product of cycles. The cycles may be
chosen to be disjointa and in this case, the decomposition into cycles is unique up to reordering and
removal of identity cycles.

aTheir non-singleton orbits being disjoint as sets.
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Proof. Fix σ ∈ SA. Define a equivalence relation on A by a ∼ b iff b lies in the orbit of A. An equivalence
class will be called a σ-orbit; if a ∈ A we write [a]σ for the σ-orbit containing a. Let A′ ⊆ A be a subset
containing exactly one element of each equivalence class. For each a ∈ A, write σa : A → A for that function

σa(x) =
{

σ(x) x ∈ [a]σ
x x /∈ [a]σ

On may then check that σa is a cycle and that

σ =
∏

a∈A′

σa

decomposes σ as a product of disjoint cycles. Let A′′ ⊆ A be that set such that a ∈ A′′ iff |[a]σ| > 1. Suppose
further that

σ =
∏
i∈I

τi

is another decomposition of s into disjoint, non-identity cycles. Fix a ∈ A′′. The is unique f(a) ∈ I such
that τf(a) does not fix a. This defines an injection f : A′′ → I. Now, fix i ∈ I. Since τi is non-identity, there
is some g(i) ∈ A such that τi does not fix g(i). Since then σ does not fix g(i), we may assume that g(i) ∈ A′′.
This yields a map g : I → A′′. Observe that f ◦ g = idI . From this and the injectivity of f , we have that
f, g are mutually inverse bijections.

Finally, one observes that the τf(a) orbit of a is the σa orbit of a and on this orbit τf(a) = σa. As both are
cycles, τf(a) = σa and we have the desired uniqueness result. QED

Definition 1.3.4 Transposition
If A is a set, a transposition σ ∈ SA is an element of the form σ = (a b) with a ̸= b.

Lemma 1.3.5 Transposition Decomposition
If A is a finite set, every element of SA is a product of transpositions.

Proof. By cycle decomposition, it suffices to show that every cycle is a product of transpositions. Consider
a0, ..., an ∈ A. Observe

(an · · · a2 a1 a0) = (an · · · a2 a0)(a1 a0)

so that a cycle of n + 1 elements can be written as a product of transpositions if a cycle of n elements can
be. We reduce in this manner to the case of n = 2 which is a transposition. QED

Discussion Unlike the decomposition into cycles, the decomposition into transpositions is wildly non-
unique. What is conserved in such a decomposition is the parity of the number of transpositions.

Proposition 1.3.6 Even/Odd Permutation
If σ ∈ SA and

σ =
∏
i∈I

σi and σ =
∏
j∈J

τj

are decompositions of σ into finitely many transpositions, then |I| is even iff |J | is. In that case, we
say that σ is an even permutation. Else, we say that σ is odd.

Proof. There is no loss in assuming that A is finite. We define the linear map Mσ : R|A| → R|A| such that
Mσ(ea) = eσ(a) where a ∈ A and ea is the a-th standard basis vector. We observe that of σ is a transposition
then det(Mσ) = −1. Indeed, since MσMτ = Mστ for any σ, τ ∈ SA, we have that σ is odd iff det(Mσ) = (−1)
and from this the result follows. QED
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Remark Depending on how one learned about determinants, one might object that this proof is circular.
After all, the Leibniz formula for the determinant makes explicit use of the parity of permutations (c.f.
[DF03].11.4). However, the determinant can be developed without using the parity of permutations (c.f. the
appendix).

We end this section with an observation which we could have made long ago.

Proposition 1.3.7 SA is not Abelian
If for any set |A| > 2, the permutation group SA is not Abelian.

Proof. Fix elements a, b, c ∈ A. Write σ = (a b) and τ = (b c). We have

(στ)(b) = c but (τσ)(b) = a

so that στ ̸= τσ and SA is not Abelian. QED

1.4 Dihedral Groups

2 New Groups from Old Groups
In this section, we consider various ways to extract new groups from old groups.

2.1 Subgroups
It is not unusual to have one group contain a smaller group. For instance (R, +) ⊆ (C, +). There is a name
for this situation.

Definition 2.1.1 Subgroup, [DF03].2.1, [Lan02]I.2
If (G, ·) is a group, a subgroup of G is a subset H ⊆ G such that

(i) If h, h′ ∈ H then h · h′ ∈ H

(ii) the set H with the domain-codomain restricted · : H ×H → H is a group. Equivalently, eG ∈ H
and if h ∈ H then h−1 ∈ H.

Remark Note that if H ⊆ G is a subgroup, the inclusion map H ↪−→ G is a group homomorphism.
There are various ways to generate subgroups.

Definition 2.1.2 Subgroup Generated by a Set, [DF03].2.4, [Lan02]I.2
Given a group G and s subset S ⊆ G, the group ⟨S⟩ ⊆ G is the smallesta subgroup of G containing
S. Explicitly, its elements are all elements of G which can be written as products of elements of S
and their inverses.

aIn the poset of subgroups

Example Consider the non-zero complex numbers C× which is a group under multiplication. Consider
⟨i⟩ ⊆ C. We have

⟨i⟩ = {i, −1, −i, 1}

which is isomorphic to Z4 as a group.
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Definition 2.1.3 Kernel, [DF03].3.1, [Lan02]I.2
If f : G → H is a group homomorphism, its kernel is

ker f = f−1({eH}) = {g ∈ G : f(g) = eH}.

Observe that ker f ⊆ G is a subgroup.

Example Any vector space has an underlying additive Abelian group. A linear map of vector spaces is a
homomorphism of these underlying groups. The kernel of this map is typically called the null space of the
linear map.

Kernels can be used to detect whether homomorphisms are injective.

Proposition 2.1.4 Injective ⇐⇒ ker = {e}
A group homomorphism f : G → H is injective if and only if ker f = {eG}.

Proof. We have already proven that f(eG) = eH . So, {eG} ⊆ ker f . If f is injective, this must be equality. It
remains to show the converse: that ker f = {eG} implies f is injective. Indeed, fix g, g′ ∈ G with f(g) = f(g′).
Then

eH = f(g−1)f(g′) = f(g−1g′)

whence eG = g−1g′. Multiplying on the left by g, we obtain g = g′. So, f is injective. QED

Example Consider the map q : Z → Z2 given by x 7→ [x]2. The the kernel ker q ⊆ Z is the set of even
integers.

As it turns out, all groups can be obtained as a subgroup of a particular family of groups.

Theorem 2.1.5 Cayley-Yoneda, [DF03].4.2
For every group G there is a set A, a subgroup S ⊆ SA, and a group isomorphism f : G → S.

Proof. We choose A = G, the underlying set of G. For each g ∈ G, define fg : A → A by fg(x) = g · x where
· is the group multiplication. Note that fg is a bijection; its inverse is fg−1 .

Define S = {fg ∈ SA : g ∈ G}. This is a subgroup of fg since fe is identity on A and fgfh = fgh for
all g, h ∈ G. Moreover, this last says that f : G → S by f(g) = fg is a group homomorphism. It is evidently
surjective.

To prove the theorem, it remains to show that f is an injection. It is enough that ker f = {e}. Indeed,
if g ∈ ker f then fg = 1A. So, g · e = fg(e) = e. But this says that g = e as desired. QED

2.2 Quotient Groups, Normal Subgroups

Definition 2.2.1 Quotient by a Subgroup, [DF03].3.1, [Lan02]I.2
Let G be a group with subgroup S. For each g ∈ G, the S-coset

gS = {gs ∈ G : s ∈ S}.

We define the quotient

G/S = {gS : g ∈ G}

to be the set of S-cosets
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Lemma 2.2.2 Coset Partition
If S ⊆ G is a subgroup, the cosets gS form a partition of G.

Proof. Define the relation ∼ on G by g ∼ h iff g · s = h for some s ∈ S. Since S is a subgroup, it contains
identity and is closed under inverses. So, ∼ is an equivalence relation. We observe that the equivalence class
of g is gS. QED

It is tempting to define a group operation on G/S by gS · hS = (gh)S. Were this a well defined product, it
would make G/S a group. Unfortunately, it is not well defined for a generic subgroup S.

Definition 2.2.3 Normal Subgroup, [DF03].3.1, [Lan02].I.3
A subgroup S ⊆ G is normal when for all g ∈ G and s ∈ S there holds gsg−1 ∈ S; that is

gSg−1 ⊆ S.

We write S ⊴ G to mean S ⊆ G is a normal subgroup.

It turns out that S ⊴ G is the condition needed for G/S to be a group.

Proposition 2.2.4 Quotient Group, [DF03].3.1, [Lan02].I.3
If S ⊆ G is a subgroup, the product

gS · hS = (gh)S

is well defined if and only if S ⊴ G. We then say that G/S is the quotient group of G by S.

Proof. Suppose that S ⊴ G. Fix s ∈ S and t ∈ S. Fix g, h ∈ G and write g′ = gs and h′ = ht. We then have

g′h′ = gsht

= gh(h−1sh)t
∈ (gh)S

since S ⊴ G. So, (g′h′)S = (gh)S and the product is well defined.

Now, consider the converse. Suppose the group operation is well defined. Fix g ∈ G and s ∈ S. We
have that (gS) ◦ (g−1S) = S since the product is well defined. Thus,

gs · g−1e ∈ S

which tells us that S ⊴ G. QED

Proposition 2.2.5 Universal Property of Quotients
If f : G → S is a group homomorphism and S ⊆ G is a subgroup such that S ⊆ ker f , there is a
unique map f̃ : G/S → H making

G H

G/S

f

g 7→gS
f̃

commute. If S ⊴ G, the map f̃ is a group homomorphism.

Proof. Should it exist, f̃ must satisfy f̃(gS) = f(g) for all g ∈ G, this so that the diagram commutes. At
once, if this action is well defined it is unique. Moreover, inspection of the group law on G/S with S ⊴ G

shows that f̃ is a group homomorphism.
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So, we need only prove that f̃(gS) = f(g) is well defined. Indeed, if gS = g′S, then there is s ∈ S

such that g′s = g. Then ff(g) = (g′s) = f(g′)f(s) = f(g′) since s ∈ S ⊆ ker f . So, f̃(gS) = f(g) is well
defined and the proof is complete. QED

We next comment on the relationship between kernels and normal subgroups.

Proposition 2.2.6 Kernel = Normal Subgroup, [DF03].3.1
If G is a group, a subgroup S ⊆ G is normal if and only if there is group H and group homomorphism
f : G → H so that S = ker f .

Proof. If S ⊴ G, consider q : G → G/S given by q(g) = gS for all g ∈ G. This is clearly a group homomor-
phism one checks that its kernel is S.

On the other hand, we need only show that if f : G → H is a homomorphism, then ker f is normal in
G. Indeed, if g ∈ G and s ∈ ker f then

f(gsg−1) = f(g)f(s)f(g)−1 = f(g)f(g)−1 = e

so that gsg−1 ∈ ker f and ker f ⊴ G as needed. QED

We end this section with Lagrange’s Theorem.

Lemma 2.2.7 A Bijection
Let G be a group and S ⊆ G some subgroup and write q : G → G/S be the usual projection. Choose
some set-theoretic section σ : G/S → G of q. Define Φ : G → S × G/S by

Φ(g) = (g(σ(gS)−1, gS).

The map Φ is a bijection.

Proof. We exhibit an inverse for Φ. Define Ψ : S × G/S → G by

Ψ(s, gS) = sσ(gS).

Indeed, we have that if g ∈ G then

Ψ(Φ(G)) = Ψ(g(σ(gS))−1, gS)
= g(σ(gS))−1σ(gS)
= g.

Moreover, if s ∈ S,

Φ(Ψ(s, gS)) = Φ(sσ(gS))
= (sσ(gS)(σ(s(σ(gS)S)))−1, sσ(gS)S)
= (sσ(gS)(σ(s(σ(gS)S)))−1, gS) (s ∈ S and σ a section of q)
= (sσ(gS)(σ(gS))−1, gS) (s ∈ S and σ a section of q)
= (s, gS).

QED

Corollary 2.2.8 Lagrange’s Theorem, [DF03].3.2, [Lan02]I.2
If G is a finite group and S ⊆ G is a subgroup, then |S| divides |G| with

|G/S| = |G|
|S|

.
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Proof. Using the bijection from the preceding lemma, we have

|G| = |S × G/S| = |S| × |G/S|.

Now divide by |S| to complete the proof. QED

Definition 2.2.9 Degree
If S ⊆ G is a subgroup, we write [G : S] for the cardinality of the quotient G/S. This cardinal is
called the degree of S i G.

Remark Lagrange’s Theorem now simply says that if S ⊆ G is a subgroup of finite G then [G : S] = |G|/|S|.

Proposition 2.2.10 Multiplicativity of Degree
If A ⊆ B ⊆ G is a family of subgroups,

[G : A] = [G : B] · [B : A].

3 Isomorphism Theorems
In this section, we prove a family of results called the isomorphism theorems. They are all corollaries to the
universal property of quotients.

Theorem 3.0.1 First Isomorphism Theorem, [DF03].3.3, [Lan02]I.3
If f : G → H is a surjective group homomorphism, G/ ker f ∼= H.

Proof. By the universal property of quotients, there is a group homomorphism f̃ : G/ ker f → H satisfying
f̃(gN) = f(g) where N := ker f . Since f is surjective, so is f̃ . It remains to show that f̃ is injective. If
f̃(gN) = eH , we then have that f(g) = eH . So, g ∈ ker f . Then gN = N since N = ker f is a subgroup
of G. At once, ker f̃ is a singleton and f̃ is injective. As it is already surjective, it is bijective, whence an
isomorphism. QED

Before stating the second isomorphism theorem, we will need a few definitions.

Definition 3.0.1 Normalizer
If G is a group with subgroup S, the normalizer of S in G is largest subgroup NG(B) of G with
S ⊴ NG(S).

Existence Any subgroup S ⊆ G has a nomalizer given by

NG(S) =
⋃

S⊴K⊆G

K.

The union is not empty since S ⊴ S ⊆ G.

Lemma 3.0.2 Subgroup Product
If A, B ⊆ G are subgroups and A ⊆ NG(B), then

AB := {ab ∈ G : a ∈ A, b ∈ B}

is a subgroup of G. Moreover, B ⊴ AB and A ∩ B ⊴ A.
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Proof. Since e ∈ A, B, we need only show that AB is closed under products and inverses. Indeed, if a, a′ ∈ A
and b, b′ ∈ B

(ab)(a′b′) = aa′(a′)−1ba′b ∈ AB

since a′(a′)−1ba′ ∈ B from A ⊆ NG(B). Similarly

(ab)−1 = b−1a−1 = a−1(aba−1) ∈ AB.

Now, we show that B ⊴ AB. Fix b0, b ∈ B and a ∈ A. Then

(ab)b0(ab)−1 = a(bb0b−1)a−1 ∈ aBa−1 ⊆ B

since A ⊆ NG(B). To show that a ∩ B ⊴ A, fix c ∈ A ∩ B and a ∈ A. Then aca−1 ∈ A since A is closed
under the group operation. It remains only to note aca−1 ∈ B since c ∈ B and A ⊆ NG(G). QED

Theorem 3.0.3 Second Isomorphism Theorem, [DF03].3.3, [Lan02]I.3
If G is a group with subgroups A, B such that A ⊆ NG(B), then

AB/B ∼= A/(A ∩ B).

Proof. Define ϕ : A → AB/B by ϕ(a) = aB which is a homomorphism by inspection. Observe that a generic
element of AB/B is of the form (ab)B for some a ∈ A and b ∈ B. In the quotient,

(ab)B = aB · bB = aB.

Thus, ϕ is surjective. By the first isomorphism theorem, A/ ker ϕ ∼= AB/B. We are done once we show
ker ϕ ⊆ A ∩ B.

By inspection, A ∩ B ⊆ ker ϕ since bB = eB = B for any b ∈ B. Indeed, if g ∈ G then gB = B iff
g ∈ B. Thus

ker ϕ = {a ∈ A : a ∈ B} = A ∩ B

and the proof is complete. QED

Theorem 3.0.3 Third Isomorphism Theorem, [DF03].3.3, [Lan02]I.3
If G is a group and A, B ⊴ G with A ⊆ B, then

A ⊴ B and B/A ⊴ G/A

and moreover

G/A ∼= (G/B)/(B/A).

Proof. The normal containment A ⊴ B follows from A ⊴ G. Then B, A ⊴ G implies B/A ⊴ G/A by
definition of product in the quotient. It remains to show G/A ∼= (G/B)/(B/A).

For this, define ϕ : G → (G/B)/(B/A) by ϕ(g) = (gB)(B/A). By inspection, we see that ϕ is surjec-
tive. Then, if g ∈ G, we have

ϕ(g) = 0 ⇐⇒ (gB)(B/A) = 0
⇐⇒ gB ∈ B/A

⇐⇒ g ∈ A

whence ker ϕ = A. So, the result follows from the first isomorphism theorem. QED

Definition 3.0.3 Lattice of Subgroups
If G is a group, there is a poset sub(G) whose elements are subgroups of G and whose order relation
is set containment. If S ⊆ G is a subgroup, we write subS⊆(G) for the subset whose elements contain
S.
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4 Group Actions
Many groups come to us as the group of symmetries of something. The general linear group on a vector space
V is a the group of linear symmetries V → V . The symmetric group SA is the set of set-theoretic symmetries
of the set A. From this, there is a sense that groups should act on objects. Group actions formalize this.

Definition 4.0.1 Group Action, [DF03]1.7
If G is a group and X is a set, a (left) group action of G on X is a map

· : G × X → X

satisfying

1. (identity) for all x ∈ X there holds eG · x = x, and

2. (associativity) for all g, h ∈ G and x ∈ X there holds g · (h · x) = (gh) · x.

A set X together with a (left) G action is called a (left) G set.

Example Any group G acts on itself by multiplication. That is, the group multiplication G × G → G is
also a group action. More generally, if S ⊆ G is a subgroup, G acts on the quotient G/S by left multiplication
g · hS := (gh)S.

There is another way to package the data of a group action.

Proposition 4.0.2 Action as Homomorphism, [DF03].4.1
Fix a group G and set X. There is a bijection between maps µ : G×X → X and maps M : G → XX ;
indeed if M is such a map, the corresponding µ is given for (g, x) ∈ G×X by µ(g, x) = M(g)(x). Under
this bijection, µ is a group action if and only if M : G → SX is a well defined group homomorphism.

The following is some terminology associated with group homomorphisms.

Definition 4.0.3 Kernel, Faithful, [DF03].4.1
Fix a left G set X. The kernel of the action is that subgroup K ⊴ G

K = {g ∈ G : g · x = x for all x ∈ X}

If we realize the action as a group homomorphism G → SX , then the kernel of the action is the kernel
of the homomorphism. If the kernel is trivial, we say the action is faithful.

Definition 4.0.4 Stabilizer, Free, [DF03].4.1
If X is a left G set and x ∈ X, the stabilizer of x is that subgroup stabx ⊆ G given by

stabx = {g ∈ G : g · x = x}.

If each stabilizer is trivial, we say the action is free.

Definition 4.0.5 Orbit, Transitive, [DF03].4.1
If X is a left G set and x ∈ X, the orbit of x is that set Gx ⊆ X given by

Gx = {g · x : g ∈ G}.

One observe that the orbits form a partition of X. If there is only a single orbit Gx = X, then we
say the action is transitive.
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A Determinants
In this section, we develop the theory of determinants from (relative) scratch. The exposition is motivated by
some notes by Keith Conrad1 and [Lan02]XIII.4. The plan in to construct an object called the exterior power
of a module. We will study this construction in Section 1. In Section 2, we use it to produce the determinant.

A minor sub-goal is to show that once can construct determinants without referring to the sign of per-
mutations. Then, one can use the determinants of permutation matrices to define the sign of a permutation.

We work over a fixed commutative ring R with unit. Module means left, unital R-module. If the reader is not
familiar with rings and modules, pretend that R is some field, e.g. R or C, and replace the word ”module”
with ”vector space.” We assume the reader is familiar with the free modules2 and quotients.

A.1 The Tensor and Exterior Power
Definition 1.1.1 Multilinear Maps

If M1, ..., Mn, N are R-modules, an n-multilinear map f : M1 × · · · × Mn → N is a function such
that for any i = 1, ..., n and any choice of mj ∈ Mj for all j ̸= i, the induced map

f(m1, ..., mi−1, −, mi+1, ..., mn) : Mi → N

is linear.

We will single out a specific type of alternating multilinear map for special study.

Definition 1.1.2 Alternating Multilinear Maps
If M, N are R-modules, an alternating multilinear map f : Mn → N is an n-multilinear map
such if i = 1, ..., n − 1 then for any m1, ..., mn ∈ M there holds

f(m1, ...., mi, mi+1, ..., mn) = 0

if for any i, j there holds mi = mj .

These are closely related to another type of map.

Definition 1.1.3 Skew Symmetric Multilinear Maps
If M, N are R-modules, an skew symmetric multilinear map f : Mn → N is an n-multilinear
map such if i = 1, ..., n − 1 then for any m1, ..., mn ∈ M there holds

f(m1, ...., mi, mi+1, ..., mn) = −f(m1, ..., mi+1, mi, ..., mn).

Discussion It is easy to show (exercise) that over a ring in which 2 is a unit - say over a field of characteristic
different from 2 - that skew symmetric maps and alternating maps are exactly the same thing. However,
this is not true in general. Consider the usual product Z2 ×Z2 → Z2 which is Z2-multilinear. It is also skew
symmetric since −1 = 1 in Z2. However, it is clearly not alternating. We do have the following lemma.

Lemma 1.1.4 Alternating Implies Skew
Any alternating multilinear map is skew symmetric.

(Alternating) multilinear maps abound in practice, and it would be nice to be able to study them, though
the reader is currently asked to take this on faith. However, despite being related to linear maps, multilinear
maps are not linear. So, the basic tools of linear algebra can’t be brought to bear. The following construction

1https://kconrad.math.uconn.edu/blurbs/linmultialg/extmod.pdf
2For the reader not familiar with modules, free just means has basis. All vector spaces are free and so this condition be safely

ignored.
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can be though of as a way around this obstruction: a method of bringing alternating multilinear algebra fully
under the preview of standard linear algebra.

Definition 1.1.5 Exterior Power
Fix a module M and a natural number k. Let F k(M) be the free module spanned by the set Mk.
Consider the submodule S spanned by all elements of the form

(m1, ..., mi, ..., mk) + r(m1, ..., m′
i, ..., mk) − (m1, ..., mi + rm′

i, ..., mk)
for all i = 1, ..., n and m1, ..., mi, m′

i, ..., mk ∈ M and r ∈ R

(m1, ..., mi, ..., mi, ..., mk)
for all i = 1, ..., k and all m1, ..., mk ∈

We define the k-th exterior power of M to be that module ΛkM := F k(M)/S.

Notation By definition, there is a linear map F k(M) → ΛkM which is surjective: it sends each element
to its equivalence class in the quotient - its S coset. If (m1, ..., mk) ∈ Mk is some tuple, one writes its image
under this quotient as m1 ∧ · · · ∧ mk. Such a thing could be called an elementary wedge As the quotient map
is surjective, every element of ΛkM is a linear combination of elementary wedges.

Discussion What in the world motivates this definition of ΛkM? Let’s restrict our attention to the case
of k = 2 to simplify notation. Observe that if a, b, c ∈ M and r ∈ R, the submodule S was chosen so that

(a + rb) ∧ c = (a ∧ c) + r(b ∧ c)

and

a ∧ (b + rc) = (a ∧ b) + r(a ∧ c)

and

a ∧ a = 0.

In other words, the formal symbol ∧ is like an ”alternating multilinear product on M .” Indeed, the three
equalities above are exactly equivalent to the claim

The map η : M × M → Λ2M by (a, b) 7→ a ∧ b is alternating multilinear.

We chose S to force this to happen and otherwise made S as small as possible. In fact, Λ2M is the ”universal”
or ”best possible” recipient of an alternating multilinear map from M2. We formalize this as follows.

Theorem 1.1.6 Universal Property of the Exterior Power
Fix module M and natural number k. The map η : Mk → Λk given by

η(m1, ..., mk) = m1 ∧ · · · ∧ mk

is alternating multilinear. Furthermore, for any other module N and any f : Mk → N alternating
multilinear, there is a unique linear map f̃ : ΛkM → N such that the diagram

Mk ΛmM

N

η

f
f̃

That is, f = f̃ ◦ η.
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Proof. There is a unique linear map f : F k(M) → N satisfying f(m1, ..., mk) = f(m1, ..., mk) for all
m1, ..., mk ∈ M (this just because F m(M) is free; we specify f on the basis). Now, we observe that since f
is alternating multilinear, there holds S ⊆ ker f where S is the submodule above yielding ΛkM = F k(M)/S.
So, by the fundamental homomorphism theorem, there is unique linear f̃ : ΛkM → N making

F k(M) N

ΛkM

f

f̃

commute. Explicitly, f̃(m1 ∧· · ·∧mk) = f(m1, ..., mk). From this, f̃ is the unique map satisfying the desired
conclusions of the theorem. QED

The virtue of this theorem is the following:

{Alternating multilinear maps out of Mk} = {linear maps out of ΛkM}.

A priori, we have no idea how to study the LHS. But, the RHS is subject to the techniques of linear algebra
which are well understood.

Lemma 1.1.6 Coordinate Choice
Let M be a rank n free module with basis B = {e1, ..., en}. For each natural k, let

Ak = {(a1, ..., ak) ∈ {1, ..., n}k : a1 < · · · < ak}.

For each a ∈ Ak, let

e∧a = ea1 ∧ · · · ∧ eak
.

For each a ∈ Ak, there exists a function φa : ΛkM → R such that

φa(e∧b) =
{

1 b = a

0 b ̸= a

Proof. We induct on k. The base case in which Λ1M = M follows from the fact that M is free.

Now, suppose that k > 1 and that we have φa for each a ∈ A, Ak−1. Fix a ∈ Ak and let a′ ∈ Ak−1
be given by a′ = (a2, ..., ak). Without loss of generality, suppose that a = (1, ..., k) so that a′ = (2, ..., k). For
each m ∈ M , let m′ ∈ M be given by the formula

m′ =
k∑

i=2
φi(m)ei.

That is, we identify the hyperplane spanned by the a′-indexed basis elements and m′ is the linear projection
of m onto this hyperplane.

Define D : Mk → R by the formula

D(m1, ..., mk) =
k∑

i=1
(−1)i+1φ1(mi)φa′

(m′
1 ∧ · · · ∧ m̂i ∧ · · · ∧ m′

k)

where the m̂i indicates that this factor is removed. We check that D is multilinear and alternating. Mul-
tilinearity is clear since each mj appears once in each summand and all the maps involved are linear or
multilinear. We turn our attention to the alternating property. Fix i < j in 1, ..., k. Let mi = m = mj .
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Using the fact that φa′ is alternating, we have that

D(..., m, ..., m, ...) = (−1)i+1φ1(m)φa′
(, ..., m̂, ..., m, ...) + (−1)j+1φ1(m)φ(..., m, ..., m̂, ...)

= (−1)i+1φ1(m)φa′
(, ..., m̂, ..., m, ...) + (−1)i+(j−i)+1φ1(m)φ(..., m, ..., m̂, ...)

= (−1)i+1φ1(m)φa′
(, ..., m̂, ..., m, ...) + (−1)i+(j−i)+1(−1)(j−i)+1φ1(m)φa′

(, ..., m̂, ..., m, ...)
= 0

where here we use that φa′ is skew symmetric. So, D induces D : ΛkM → R. Finally, we check

D(e∧b) =
{

1 b = (1, ..., k)
0 b ̸= (1, ..., k)

Indeed,

D(1, ..., k) = φa′
(2, ..., k) − 0 + 0 − · · · = 1

by definition of φa′ . Indeed, we see that

D(eb1 , ..., ebk
) = φ1(b1)φa′

(eb2 ∧ · · · ∧ ebk
)

since the b multi-index is strictly increasing. Then φ1(b1) ̸= 0 iff b1 = 1 and φa′(eb2 ∧· · ·∧ebk
) ̸= 0 iff b′ = a′.

This concludes the proof. QED

Remark Up till this last lemma, the exposition has closely followed Conrad’s notes. However, the approach
there to this lemma (c.f. Theorem 4.2) uses the sign of a permutation in a critical way. To avoid using signs,
we adapted Lang’s implementation of the cofactor expansion (c.f. [Lan02]XIII.4 and the discussion following
Corollary 4.9).

Proposition 1.1.7 Exterior Power of Free is Free
If M is a rank n free module with basis B = {e1, ..., en}, then ΛkM is a free module of rank

(
n
k

)
with

basis

Bk = {ei1 ∧ · · · ∧ eik
: i1 < · · · < ik}

Proof. Since M is spanned by B and η : Mk → ΛkM is surjective, multilinear, and alternating, it is not
hard to see that Bk spans ΛkM . Just take any elementary wedge m1 ∧ · · · ∧ mk write each mi using the B
basis, expand using multilinearity to get a sum of elementary wedges whose ”factors” lie in B, and use the
alternating property to reorder factors till you get an element of Bk. So, the real work is showing that Bk is
linearly independent, but this follows at once from the preceding coordinate choice lemma. QED

Corollary 1.1.8 Top Exterior Power
If M is a rank n free module, ΛnM is a free module of rank 1. It is called the top exterior power.

We finish this section by showing that the exterior powers play well with linear maps.

Proposition 1.1.9 Functoriality of Λk

If f : M → N is a linear map of modules, there exists a linear map Λkf : ΛkM → ΛkN satisfying

f(m1 ∧ · · · ∧ mk) = f(m1) ∧ · · · ∧ f(mk)

for all m1, ..., mk ∈ M . Furthermore, if g : N → L is another map of modules, there holds

Λkg ◦ Λkf = Λk(g ◦ f).

Lastly, Λk(1M ) = 1ΛkM .
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Proof. The claims

Λkg ◦ Λkf = Λk(g ◦ f) and Λk(1M ) = 1ΛkM

follow by inspection from

f(m1 ∧ · · · ∧ mk) = f(m1) ∧ · · · ∧ f(mk)

and the fact that ΛkM is spanned by elementary wedges. So, we need only show this last equation.

Define Lkf : Mk → N by

Lkf(m1, ..., mk) = f(m1) ∧ · · · ∧ f(mk).

This is multilinear and alternating since f is linear and by properties of ∧. By universal property, we get a
map ΛkM → N satisfying

f(m1 ∧ · · · ∧ mk) = f(m1) ∧ · · · ∧ f(mk)

which concludes the proof. QED

A.2 The Determinant
We can now define the determinant.

Definition 1.2.1 Determinant
Fix a rank n module M and a linear map f : M → M . The top exterior power Λnf : ΛnM → ΛnM
is a linear map of rank 1 free modules. That is, it is multiplication by an element of R. Call that ring
element det f .

From this definition, one can prove all the usual properties of the determinant. Indeed, the crucial fact that
det(f ◦ g) = det(f) det(g) follows at once from the functoriality property Λk(f ◦ g) = Λkf ◦ Λkg.

Moreover, while prima facie abstract , this definition lends itself well to computation. Consider the ma-
trix

A =


3 0 1
1 2 6
0 7 0


and suppose we want to compute det A.

First, view A as a linear map A : Z3 → Z3 (or R3 → R3, etc.) and let e1, e2, e3 denote the standard
basis. Then e1 ∧ e2 ∧ e3 is a basis for Λ3Z3. Observe

(Λ3A)(e1 ∧ e2 ∧ e3) = Ae1 ∧ Ae2 ∧ Ae3

= (3e1 + e2) ∧ (2e2 + 7e3) ∧ (e1 + 6e2)
= [3e1 ∧ (2e2 + 7e3) ∧ (e1 + 6e2)] + [e2 ∧ (2e2 + 7e3) ∧ (e1 + 6e2)] (multilinearity)
= [3e1 ∧ 7e3 ∧ 6e2] + [e2 ∧ 7e3 ∧ e1] (alternating property)
= −126(e1 ∧ e2 ∧ e3) + 7(e1 ∧ e2 ∧ e3)
= (−119)e1 ∧ e2 ∧ e3

Since

(Λ3A)(e1 ∧ e2 ∧ e3) = det(A)e1 ∧ e2 ∧ e3,

we conclude that det(A) = −119.
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