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Remark A Throughout, if a problem asks for an example one must also prove that that the example has
the necessary properties unless one is explicitly instructed not to.

Remark B Some problems will reference ordinals and cardinals. If you are unfamiliar with these objects,
feel free to assume that each is finite (i.e. just a natural number) or the set of all natural numbers, though
this simplification should be stated explicitly in the solution.

Remark C The phrase “prove carefully” means to prove without any hand-waving. Your presentation of
such a problem need not show all of the details, but you should be able to fill any gaps in the presented
proof if questioned. The phrase ”convince yourself” means to understand why the claim is true and be able
to give at least an informal explanation during presentation.

Remark D When solving a problem, you may freely use the results of any other problem which has been
assigned in a prior or current week or the results of any problem that the question statement says may be
used without proof.

1 Algebraic Topology

1.1 Homotopy

Problem 1.1.1. Show that the general linear group GLn(R) deformation retracts onto the orthogonal group
On(R) = {A ∈ GLn(R) : AAT = I}.
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Problem 1.1.2. Let R∞ =
⊕

n≥0 R. Equip R∞ with the inner product ⟨x, y⟩ =
∑

n xnyn and the metric
topology it induces. Show that the unit sphere S∞ in this space is contractible.

Problem 1.1.3. State and prove the cellular approximation theorem. For simplicity, you may prove it for
finite complexes only. [Stating the theorem seems fair for the qual but I would not expect one to be asked
to prove it.]

Problem 1.1.4 (Tamu, Winter 2023). Show that if n > 1 then every map f : Sn → S1 is nullhomotpic.

Problem 1.1.5 (Tamu, Fall 2022). Show that any continuous maps f : RP 2 → S1 × S1 is nullhomotpoic.

Problem 1.1.6. Prove carefully that R2 with n punctures is homotopy equivalent to a wedge of n-circles.

Problem 1.1.7. Let q : X → Y be a quotient map. Prove that q × I : X × I → Y × I is also a quotient map.
[Addendum: This is true if I is replaced by any locally compact, Hausdorff space. Feel free to prove the
claim in that generality. Hint: This may be proven directly, but there is a slick proof utilizing 1.1.9 which
may be used without proof.]

Problem 1.1.8. A Serre fibration is a continuous map f : X → Y so that for any commutative diagram

Dn X

Dn × I Y

fi0

u

v

of topological spaces (here i0(x) := (x, 0)) there exists a continuous map h so that the diagram

Dn X

Dn × I Y

fi0

u

v

h

commutes.

(a) Let f : X → Y be continuous. Assume that Y has an open cover U so that if U ∈ U then f : f−1(U) → U
is a Serre fibration. Prove f is a Serre fibration.

(b) Prove that any fibre bundle is a Serre fibration.

Problem 1.1.9 (∗). Let X and Y be topological spaces and write Y X for the set of continuous maps from X
to Y . For compact K ⊆ X and open U ⊆ Y , let

W (K,U) = {f ∈ Y X : f(K) ⊆ U}.

The topology on Y X generated by the subbasis {W (K,U)}K,U is called the compact-open topology. Endow
Y X with this topology. Define further the evaluation map evX,Y : Y X ×X → Y given by ev(f, x) = f(x).

(a) Show that if X is locally compact1 then ev is continuous.

(b) Let f : A×X → Y a mapping of sets. Its adjoint mapping is f∧ : Y → Y X specified by f∧(a)(x) = f(a, x)
for all a ∈ A and x ∈ X . Show that if f is continuous so is its adjoint. If evX,Y is continuous, show that
α : Y A×X → (Y X)A is a bijection. Denote its inverse mapping by f 7→ f∨.2

(c) AssumeX is locally compact. If g : A→ B is continuous, show that g∗ : AX → BX is continuous where
g∗(f) := g ◦f . Verify that the commutativity of the following pair of diagrams is equivalent (both when
everything is a mapping of sets and when everything is a mapping of spaces)

W ×X A W AX

Y ×X B Y BX

f×1X

k

h

g f g∗

k∧

h∧

1each neighborhood of each point contains a compact neighborhood of the point
2Moral exercises: (1) If A and X are locally compact, then α is a homeomorphism. (2) Verify that there are spaces X for which

(−)×X does not have a right adjoint.
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(d) Make precise the informal statement ”a homotopy from map f0 to map f1 is a path from f0 to f1”
assuming the spacec involved are nice enough.

Problem 1.1.10 (∗). A cofibration is a map i : A→ X of topological spaces which has the homotopy extension
property (HEP) against all spaces: for any commutative diagram of solid arrows there is a dotted arrow for
which the diagram commutes

A Y I

X Y

i ev0

h

f

H

(where here ev0(f) := f(0)). Prove that the class of cofibrations is weakly saturated where weakly saturated
means

(i) Contains all isomorphisms.

(ii) Is closed under composition.

(iii) Is closed under transfinite composition: if λ is an ordinal and X : λ → TOP is a cocontinuous functor
valued in cofibrations then X0 → colimαXα is a cofibration. [Addendum: If ordinals and colimits are
too unfamiliar, this may be skipped.]

(iv) Is closed under cobase change: if i : A→ X is a fibration, f : A→ A′ is continuous, and

A A′

X X ⊔A A
′

i i′

f

is the canonical diagram, then i′ is a cofibration.

(v) Is closed under retracts: for any commutative diagram

A′ A A′

X ′ X X ′

i′ i i′

f r

g s

id

id

if i is a cofibration then so is i′.

(vi) Is closed under disjoint union.

Problem 1.1.11 (∗). Prove that a map i : A → X is a cofibration (see 1.1.10) if and only if it has HEP for its
own mapping cone Z(i).

Problem 1.1.12. Let X and Y be topological space, A ⊆ X , and f, g : X → Y define “f is homotopic to g
relative to A.”

Problem 1.1.13. The standard topological n-simplex ∆n
TOP ⊆ Rn+1 is defined to be

∆n
TOP = {(x0, ..., xn) ∈ Rn+1 : xi ≥ 0 for all i ≥ 0 and

∑
i

xi = 1}.
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Further, any non-decreasing map ρ : {0, 1, ..., n} → {0, 1, ...,m} defines a canonical continuous map ρ∗ :
∆n

TOP → ∆m
TOP by ρ∗(x0, ..., xn) = (y0, ..., ym) where

yi =
∑

ρ(j)=i

xj .

For notational convenience, if i ≤ j, then ⟨i, j⟩ : {0, 1} → {0, 1, 2} is that map carrying 0 to i and 1 to j.
Further, the map λ : [0, 1] → ∆1 given by λ(t) = (1− t, t) is a homeomorphism.

Prove that if X is a topological space and γ, γ′ are continuous paths in X with the same endpoints, then γ
and γ′ are homotopic if and only if there is a continuous map σ : ∆2

TOP → X so that

γ = (⟨0, 2⟩∗σ) ◦ λ and γγ′ = (⟨1, 2⟩∗σ) ◦ λ

and ⟨0, 1⟩∗σ is constant.

Problem 1.1.14 (∗). Recall the definition of Serre fibration from Problem 1.1.8. Further, say that a continuous
map f : X → Y is a weak homotopy equivalence when it is bijective on path components and for all x0 ∈ X
and n ≥ 0 the natural map

f∗ : [(Sn, p), (X,x0)] → [(Sn, p), (Y, f(x0)]

of homotopy classes is bijective.3 Show that if f : X → Y is both a weak homotopy equivalence and a Serre
fibration then f has the right lifting property against the boundary inclusions i : Sn−1 → Dn for all n ≥ 0.
That is, show that for every commutative diagram

Sn−1 X

Dn Y

u

f

v

of continuous maps, there exists a commutative diagram

Sn−1 X

Dn Y

u

f

v

K

of continuous maps.

Problem 1.1.15. Find a path connected space X which is not homotopy equivalent to a point but so that
any continuous map Sn → X is null homotopic.

Problem 1.1.16. Show that the fundamental group of a CW complex depends only on the 2-skeleton of the
complex.

Problem 1.1.17. Show that the Klein bottle may be obtained by gluing two Mobius bands along their bound-
ary.

Problem 1.1.18 (Hatcher, Chapter 0, #28). Suppose (X1, A) is a CW-pair with the homotopy extension
property and f : A→ X0 is continuous. Show that (X1 ⊔f X0, X0) has the homotopy extension property.

Problem 1.1.19 (Boston College Qual). Let f : S1 ∨ S1 → T 2 and g : T 2 → S1 ∨ S1 be continuous. Can
fg ≃ idT 2? Can gf ≃ idS1∨S1 .

Problem 1.1.20 (Hatcher, Chapter 0, #19). Show that the space obtained by attaching n two cells to S2 along
circles is homotopy equivalent to

∨n+1
i=1 S

2.
3Indeed, these are naturally group homomorphisms, but this is not needed here.
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Problem 1.1.21. Show that if (X,A) and (X,B) are CW-pairs with A,B,A ∩ B contractible, then X is
contractible.

Problem 1.1.22. Show that any continuous map f : S3 × S3 → RP 3 which is not surjective is homotopic to
a constant map.

Problem 1.1.23. If α and β are paths in a topological space X and there is a continuous map φ : I → I with
φ(0) = 0 and φ(1) = 1 so that

I X

I

α

β
φ

commutes, then α and β are fixed endpoint homotopic.

Problem 1.1.24. Show that a spaceX is contractible if and only if (a) every map f : X → Y or (b) f : Y → X
is nullhomotopic, where Y ranges over all spaces.

Problem 1.1.25. Fix a map f : X → Y . Show that f is a homotopy equivalence if and only if there are maps
g, h : Y → X so that fg and hf are homotopy equivalences.

Problem 1.1.26. Find a two dimensional CW complex containing both the Möbius band and the Klein bottle
as deformation retracts.

Problem 1.1.27. Let X be a topological space and A ⊆ X . Suppose f, g : X × I → X are deformation
retracts of X onto A. Show that f and g are homotopic.

Problem 1.1.28. Call a space well connected when its path components and connected components coincide.
Show that well connectedness is invariant under homotopy equivalence.

Problem 1.1.29. Does the Borsuk-Ulam theorem hold for the torus S1 × S1. That is, if f : S1 × S1 → R2 if
continuous, is there a point (z, w) ∈ S1 × S1 so that f(z, w) = f(−z,−w)?

1.2 Fundamental Group

Problem 1.2.1. Compute the fundamental group of a genus g surface.

Problem 1.2.2 (5410 Homework). Show that the fundamental group of a manifold is countable.

Problem 1.2.3. Show that if p, q lie in the same path component of a space X then π1(X, p) ∼= π1(X, q).
Show that this is not necessarily true if p, q lie merely in the same connected component.

Problem 1.2.4. Find a space whose fundamental group is uncountable.

Problem 1.2.5 (Georgia, Fall 2022). Let X be the topological space obtained from S1 × [0, 1] by imposing
the relation (eiθ, 0) ∼ (e3iθ, 1) for all θ. Compute the fundamental group of X .

Problem 1.2.6 (Georgia, Spring 2022). Show that the spaces S3 ∨ RP 2 and S2 ∨ RP 3 have the same funda-
mental group.4

Problem 1.2.7 (Georgia, Spring 2022). Let T = S1 ×D2 denote the solid torus and let p and q be relatively
prime. Define ϕ : ∂T → ∂T by

ϕ(ψ, 1, θ) = (pψ + qθ, 1, bψ + aθ)

where a and b are integers so aq−bp = 1. Compute the fundamental group of the lens space L(p, q) = T ⊔ϕT
in terms of p and q.

4Bonus problem: Show these spaces are not homotopy equivalent. This is a bonus because I am not sure this is doable without
homology.
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Problem 1.2.8 (UCLA, Spring 2001). A homotopy class [α] ∈ π1(X,x0) is called cyclic when there is a
homotopy H : X × I → X with H(−, 0) = H(−, 1) = idX and H(x0,−) = α. Let J(X,x0) ⊆ π1(X,x0)
denote the set of such classes.

(a) Show that J(X,x0) is contained in the center of π1(X,x0).

(b) Show that if X is a topological group then J(X,x0) = π1(X,x0)

Problem 1.2.9 (Extension of Iowa, Fall 2022). Prove that for any group homomorphism f : G → H there
exists a continuous map h : X → Y of topological spaces and commutative diagram

G H

π1(X) π1(Y )

f

h∗

∼= ∼=

of group homomorphisms. [Addendum: To simplify matters, you may assume that the groups are finitely
generated.]

Problem 1.2.10. Compute the fundamental group of S2 with n punctures.

Problem 1.2.11. Define the complex projective space CPn. Find a cell structure for CPn. Prove that CPn is
simply connected for all n.

Problem 1.2.12 (∗). For this problem, you may only use Van Kampen on finite open covers. Fix a topological space
X , a directed set D, and a family {Uα : α ∈ D} of open subsets of X so that if α < β in D there holds
Uα ⊆ Uβ .

(a) Suppose {Gα : α ∈ D} is a family of groups and whenever α < β in D there is a group homomorphism
ϕβα : Gα → Gβ satisfying ϕγβϕβα = ϕγα. Define5 the directed limit/colimit of the Gα along the ϕβα.

(b) Assume that X =
⋃

α∈D Uα and prove that

π1(X) = colimα∈D π1(Uα).

(c) Prove that for any cardinal κ the wedge of κ many copies of S1 has fundamental group free on κ many
generators.

[Addendum: for ease of use, one may solve the simplified problem where D = N and κ = |N|.]

Problem 1.2.13. For each n ∈ N, let Xn ⊆ R2 denote the circle of radius 1/n centered on 1/n. Define
X =

⋃
nXn and equip it with the subspace topology from R2. Prove that π1(X) is not countable.

Problem 1.2.14 (Generalized Van Kampen, (∗)). A groupoid is a set G paired with a subset C ⊆ G × G of
composable elements together with functions composition ∗ : C → G (one writes ∗(a, b) = ab) and inversion
ι : G→ G (one writes ι(a) = a−1) satisfying for a, b, c ∈ G

Associativity if ab and bc are defined then so are (ab)c and a(bc) which are equal;

Inverses aa−1 and a−1a are always defined;

Identity if ab is defined then a−1ab = b and abb−1 = b.

[Alternatively and equivalently, a groupoid is a category in which every morphism is invertible.]

(a) Convince yourself that any topological spaceX with subsetA has a fundamental groupoid Π(X,A) whose
elements are fixed-endpoint homotopy classes of paths whose endpoints lie in A and whose composi-
tion is concatenation. [Notation: one writes Π(X) for Π(X,X)]

5either directly (a typical element looks like this...) or abstractly (a group equipped with the data...)
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(b) Write down a reasonable definition of groupoid homomorphism.6 Prove that if f : X → Y is a continu-
ous map and f(A) ⊆ B, then there is an induced homomorphism of groupoids f∗ : Π(X,A) → Π(Y,B).

(c) Prove the following:

Van Kampen’s Theorem If X is a topological space with open cover U ∪ V = X then for any
groupoid G and groupoid homomorphisms making the diagram

Π(U ∩ V ) Π(V )

Π(U) Π(X)

GfU

fV

commute, there exists a unique groupoid homomorphism f : Π(X) → G making

Π(U ∩ V ) Π(V )

Π(U) Π(X)

GfU

fV

f

commute.7

Problem 1.2.15 (Extension of Dieck, Ch. 3). For each n ≥ 1, we may define the Euclidean space with two
origins En = Rn ⊔ Rn/ ∼ where ∼ identifies all duplicate pairs other than the two origins.

(a) Compute π1(En) for n ≥ 1.

(b) Let Lκ denote R with κ many origins. Compute π1(Lκ).

(c) Let K = (κn)n∈N denote a sequence of cardinals. Let LK denote R but with κn many copies of n for
each n ∈ N. Compute π1(LK).

(d) Let P denote R2 with a doubled copy of S1. Compute π1(P ).

Problem 1.2.16. Compute the fundamental group of the very long line.

Problem 1.2.17. Find a space which is not homeomorphic to a CW complex. Find a space which is not
homotopy equivalent to a Hausdorff space.

Problem 1.2.18 (Tulane, Fall 2012). Prove that a connected space is simply connected if and only if every
continuous map of S1 into the space has a continuous extension to D2.

Problem 1.2.19. Find the fundamental group of the space obtained from R3 by

(a) removing the unit circle in the xy-plane and the z-axis;

(b) removing the unit circle in the xy-plan and the x- and y-axes.

Problem 1.2.20. Find two spaces which are not homotopy equivalent but have the same fundamental group
and universal cover.

6When all elements are composable a groupoid is just a group and your definition of groupoid homomorphism should reduce to
that of group homomorphism.

7Moral exercises: (1) Extend this result to larger open covers. (2) Prove the usual version of Van Kampen’s Theorem from the
groupoid version [Hint: What can you say about a retract of a pushout diagram?].
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Problem 1.2.21 (Iowa, Fall 2015). Find the fundamental group of the torus with k-points removed.

Problem 1.2.22 (Iowa, Fall 2016). Find the fundamental group of the space obtained by identifying the
antipodal points of the two-dimensional unit disk.

Problem 1.2.23 (Iowa, Winter 2016). Find the fundamental group of the space obtained from the three disk
by identifying a finite collection of points. That is, find π1(D3/A) where A ⊆ D3 is finite.

Problem 1.2.24 (Iowa, Winter 2017). Find the fundamental group of the space obtained from S2 by identi-
fying a finite collection of points. That is, find π1(S2/A) where A ⊆ S2 is finite.

Problem 1.2.25. Prove that Sn is simply connected for n > 1. You may not use Sard’s theorem unless you
provide a proof.

Problem 1.2.26. Prove that R2 is not homeomorphic to Rn for n ̸= 2.

Problem 1.2.27. Find (pointed) spaces X and Y so that π1(X ∨ Y ) ̸= π1(X) ∗ π1(Y ). [Proving this is hard
and probably beyond the scope of the qual. It is still a good exercise to find such spaces.]

Problem 1.2.28. Fix a space X and p ∈ X . Define an associative monoid L(X) whose elements a loops
α : [0, a] → X with α(0) = α(a) = p and a > 0. The monoid operation is given by α ∗ β : [0, a+ b] → X by

α ∗ β(t) =

{
β(t) t ∈ [0, b]

α(t− b) t ∈ [b, b+ a]

Let L (X) denote the group completion ofL(X). Find a surjective group homomorphism L (X) → π1(X, p)
and describe its kernel.

Problem 1.2.29. Find a retraction which is not a deformation retraction but which induces isomorphism on
the fundamental group.

Problem 1.2.30. Compute π1(T ∗S1).

Problem 1.2.31. Show that the fundamental group of the infinite genus orientable surface (see Hatcher, pg
54) has fundamental group free on infinitely many generators.

Problem 1.2.32. Consider the subset X of R3 consisting of the union of spheres of radius 1/n centered at
(1/n, 0, 0) for n = 1, 2, .... Show X is simply connected.

Problem 1.2.33. Let X ⊆ R3 be the space obtained by taking the union of the circle of radius n centered at
n for n = 1, 2, .... Show that X is homotopy equivalent but not homeomorphic to the countable wedge of
circles.

Problem 1.2.34. Show that if X and Y are simply connected, non-empty, and X path connected, then the
join X ∗ Y is simply connected.

1.3 Covering Spaces

Problem 1.3.1 (Tamu, Fall 2022). Show that ifX is a path connected space whose universal cover is compact
then π1(X) is finite.

Problem 1.3.2 (Tamu, Fall 2022). Let X and Y be path connected and locally path connected spaces with
universal covers X̃ and Ỹ respectively. Show that if X is homotopy equivalent to Y then X̃ is homotopy
equivalent to Ỹ .

Problem 1.3.3 (Factorization of Covering Maps). Let X,Y, Z be path connected, locally path connected
spaces and

Y Z

X

r s

t
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be a commutative diagram of continuous maps.8 Show that if either r, s are covering maps or t, r are
covering maps then the third map is a covering map.

Problem 1.3.4 (UCLA, Fall 2022). Let B be path connected, locally path connected, and semilocally simply
connected. Recall that a path connected covering π : E → B is called abelian when π1(E) is normal in π1(B)
and the quotient is abelian. Show that there is a universal abelian cover: an abelian cover π0 : E0 → B so
that any other abelian cover π : E → B factors as a covering map E → E0.

Problem 1.3.5. For each n, let Fn denote the free group on n generators. Prove that for each n ∈ N there is
an injection Fn ↪−→ F2.

Problem 1.3.6. Let p : E → B be a covering map of pointed topological spaces. State what it means for a
map f : X → B to lift against p. Prove carefully that an path γ : I → B has a unique lift against p.

Problem 1.3.7 (Nielsen-Schreier Theorem). Let Γ be a graph with vertices V and edges E.

(a) Prove that Γ has a maximal tree.9 If Γ is connected, show that a maximal tree is exactly a tree containing
each vertex.

(b) Recall how to view a graph as a 1-dimensional CW complex. Show that if Γ is a connected graph with
maximal tree T then the space Γ/T obtained by collapsing T to a point is a wedge of circles which is
homotopy equivalent to Γ.

(c) Prove that a covering space of a wedge of circles must be a graph.

(d) Prove

Nielsen-Schreier Theorem Any subgroup of a free group is free.

Problem 1.3.8 (5400 Final, 2021). Find all connected covering spaces of the Möbius band.

Problem 1.3.9. Define covering space. Prove that if the base space is connected then each fibre has the same
cardinality.

Problem 1.3.10 (Iowa, Fall 2015). Find a non-trivial covering space of R3 without the z-axis.

Problem 1.3.11. Suppose π : E → B is a covering projection with finite fibres. Show that E is compact and
Hausdorff if and only if B is compact and Hausdorff.

Problem 1.3.12. Find a universal cover for a sphere adjoined with its diameter. Describe it precisely.

Problem 1.3.13. Find all 3-sheeted normal covering maps of S1 ∨ S1 and compute their corresponding
group of deck transformations.

Problem 1.3.14. Show that if X is path connected, locally path connected then every map X → S1 is null-
homotopic.

1.4 CW Complexes

Problem 1.4.1 (Tulane, Winter 2019). Define CW-complex10 Give an example of a CW complex different
from a sphere in each dimension.11. Produce a compact, locally connected space which is not homeomor-
phic to a CW complex.

Problem 1.4.2. Prove that any CW-complex X is perfectly normal Hausdorff; that is, Hausdorff and for
any pair E,F of disjoint closed subsets of X there exists continuous f : X → R so that f−1({1}) = E and
f−1({0}) = F .

8Each surjective if you believe covering maps must be surjective.
9A tree is a connected subgraph without cycles.

10Be specific about the topology placed on an infinite dimensional complex.
11Including infinite dimensions
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Problem 1.4.3. Suppose that X is a CW-complex and p ∈ X . Show that there is a CW-structure on X with
p as a zero cell.

Problem 1.4.4. Is the Hawaiian earrings of Problem 1.2.13 a CW complex?

Problem 1.4.5. Show that any CW complex is locally contractible (every point has a contractible neighbor-
hood).

Problem 1.4.6. Show that a CW complex is path connected if and only if its 1-skeleton is path connected.

Problem 1.4.7. Show that a CW complex is locally compact if and only if each point has a neighborhood
meeting only finitely many cells.

2 Manifolds

2.1 Foundations

Problem 2.1.1 (∗). State and prove the chain rule for Euclidean space.

Problem 2.1.2 (∗). State and prove Taylor’s theorem.

Problem 2.1.3. Prove the existence of smooth functions which are not analytic.

Problem 2.1.4. Prove that R is not homeomorphic to Rn for n > 1.

2.2 Point-Set

Problem 2.2.1. Show that every topological manifold is Lindelöf (every open cover admits a countable
subcover)

Problem 2.2.2. Let M be a manifold. Show that every path in M is fixed-end-point homotopic to a smooth
path. Using this fact, show that if n > 1 then Sn is simply connected. You may use

Sard’s Theorem The set of critical values of any smooth map has measure 0.

without proof.

Problem 2.2.3 (6410 Homework). Find a smooth embedding Sm × Sn ↪−→ Rm+n+1.

Problem 2.2.4. Let M be a topological manifold. Show that there exists a family {An : n ∈ Z} of compact
subsets of M and a family {Vn : n ∈ Z} of open sets in M so that each An ⊆ Vn, the An cover M , and each
Vn intersects only finitely many Vk. [Hint: Find families Un and Kn so that

Un ⊆ Kn ⊆ Un+1

of open Un and compact Kn which cover M ]. You may use Problem 2.2.1 without proof.

Problem 2.2.5. An exhaustion of a topological space M is a continuous map f : X → R so that for all c ∈ R
the sets f−1((−∞, c]) is compact. Prove that every topological manifold admits a non-negative exhaustion
and that if the manifold is smooth, the exhaustion may be taken to be smooth.

Problem 2.2.6. Prove that the product of a smooth manifold and a smooth manifold with boundary is a
smooth manifold with boundary.

Problem 2.2.7. Let K = [−1, 1] × [−1, 1] ⊆ R2. Show that there is a homeomorphisms f : R2 → R2 with
f(S1) = K but no diffeomorphism with this property.
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2.3 Basics of Manifolds

Problem 2.3.1. Let p :M → N be a smooth map of smooth manifolds.

(a) Show that p is a surjective submersion if and only if p has local, smooth sections at each point in its
image.

(b) Let X be a smooth manifold. Show that if p is a surjective submersion and the following diagram of
continuous maps commutes

M X

N

p

f

h

then f is smooth if and only if h is smooth.

Problem 2.3.2. Prove that an oriented, compact smooth manifoldM with boundary cannot smoothly retract
onto its boundary. Show that compactness is a necessary assumption.

Problem 2.3.3 (Stack of Records Theorem). Let f : X → Y be a smooth map between smooth manifolds of
equal dimensions. LetX be compact and y be a regular value of f . Prove that there is an open set y ∈ U ⊆ Y
so that f−1(U) = V1 ∪ · · · ∪ Vn and each f : Vi → U is a diffeomorphism.

Problem 2.3.4. Define Lie group. Prove that GLn(R) is a Lie group. How many connected components
does it have? Prove your claim is correct.

Problem 2.3.5. In Differential Topology by CTC Wall, a smooth m-manifold M is defined to be a Hausdorff
topological space which is a countable union of compact sets equipped with a family F of continuous real
valued functions on M satisfying

(M I) Locality: if f : M → R is such that for every point p ∈ M there is a neighborhood p ∈ V and g ∈ F
so f |V = g|V , then f ∈ F .

(M II) Differential closure: if f1, ..., fk ∈ F andF is a smooth real valued function on openU ⊇ (f1, ..., fk)(M),
then F (f1, ..., fk) ∈ F .

(M III) Locally Euclidean: for each p ∈ M there are f1, ..., fm ∈ F so that (f1, ..., fm) : M → Rm gives a
homeomorphism of an open neighborhood U of p to an open subset V of Rm. Furthermore, every
f ∈ F coincides on U with F (f1, ..., fm) where F : V → R is smooth.

Let M be a Hausdorff topological space which is a countable union of compact sets. Prove that the set of
maximal atlases on M is in bijection with the set of families F satisfying (M I), (M II), and (M III).

Problem 2.3.6. Find a topological space with two different smooth structures which are still diffeomorphic.

Problem 2.3.7. Define RPn and prove that it is a topological manifold. Give charts witnessing a smooth
structure and prove that one of the transitions is smooth.

Problem 2.3.8. Prove that if A is a finitely generated abelian group then there is a connected manifold M
so that π1(M) ∼= A. [Hint: Use the structure theorem for finitely generated abelian groups.]

Problem 2.3.9. For each of the following assertions, state whether it is true or false and provide a justifica-
tion (can be a proof sketch).

(a) Every n-dimensional submanifold (without boundary) of Rn is an open set.

(b) Every submanifold of an orientable manifold is orientable.

(c) If G is a group, there is a manifold whose fundamental group is G.

(d) Every smooth submersion between manifolds of equal dimension is a covering projection.
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Problem 2.3.10 (∗). Let M be a smooth manifold.

(a) Let Γ ⊆M×M be the graph of an equivalence relationR onM . Prove that the following are equivalent

(i) The quotient M/R is has a smooth manifold structure so that the quotient q : M → M/R is a
submersion.

(ii) The graph Γ is a smooth submanifold of M ×M and π1 : Γ →M by π1(x, y) = x is a submersion.

(b) If M is equipped with a smooth, free, proper action of a Lie group G then there is a unique-up-to-
diffeomorphism smooth structure on M/G so that the quotient is a submersion.

Problem 2.3.11. Prove that there is a Lie group of each dimension.

Problem 2.3.12. Prove that any Lie group homomorphism has constant rank. Prove that the kernel of a Lie
group homomorphism is a Lie subgroup

Problem 2.3.13. Let G be a Lie group. Let W ⊆ G be a neighborhood of identity. Prove

(a) W generates an open subgroup of G.

(b) If W is connected, so is the subgroup it generates.

(c) If G is connected, then W generates G.

Problem 2.3.14. LetG be a Lie group which acts smoothly onN and smoothly and transitively onM . Prove
that if F :M → N is smooth and equivariant then it has constant rank.

2.4 Tangent Spaces and Vector Bundles

Problem 2.4.1. Let M be a smooth manifold and p ∈M .

(a) Show that the ring C∞
p (M) is local (has a unique maximal ideal mp).

(b) Let the field kp = C∞
p (M)/mp and note that mp/m

2
p inherits the structure of a kp vector space. Show that

kp ∼= R as a field and that (mp/m
2
p)

∨ ∼= TpM as R vector spaces.

Problem 2.4.2. Let M be a smooth manifold and p ∈ M . Show that the vector spaces of point derivations
on C∞

p (M) and C∞(M) are isomorphic.

Problem 2.4.3. Let M be a smooth manifold and π : E → M a vector bundle. A connection on E is an
R-linear map

∇ : Γ(TM)⊗ Γ(E) → Γ(E), ∇(ξ ⊗ s) =: ∇ξs

satisfying for all smooth vector fields ξ, ζ ∈ Γ(TM) and smooth f :M → R and sections s ∈ Γ(E)

∇ξ+fζs = ∇ξs+ f∇ζ and ∇ξ(fs) = ξ(f)s+ f∇ξs.

Show

(a) for any point p ∈M the quantity of (∇ξs)p depends only on the values of ξ and s in a neighborhood of
p;

(b) any vector bundle π : E →M admits a connection.

Problem 2.4.4. Carefully define the tangent bundle of a manifoldM and its structure as a smooth manifold.
You may assume that the definition of tangent space at a point is known.

Problem 2.4.5 (UCLA, Spring 2021). State Brouwer’s fixed point theorem. Prove the theorem for D2 with-
out using homotopy groups. You may assume the hairy ball theorem: any vector field on S2 vanishes.
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Problem 2.4.6. Consider the Lie group Γ = GLn(R). When the tangent space of identity e = In ∈ Γ
is identified with Mn(R), the differential of the determinant yields a map det∗ : Mn(R) → R which is a
familiar operation on matrices. What is it?

Problem 2.4.7 (New Mexico, 2006). Define local and global frames in the context of vector bundles. Prove
from the definitions that a vector bundle is trivial if and only if it admits a global frame.

Problem 2.4.8 (New Mexico, 2007). Show that TS3 is a trivial vector bundle.

Problem 2.4.9 (New Mexico, 2008). Find all integral curves to the vector field x2∂x + ∂y on R2.

Problem 2.4.10 (New Mexico, 2009). Prove that ifX is a vector field on a manifoldM which does not vanish
at p ∈M , then there are local coordinates x1, ..., xn about p so that near p X = ∂x1 .

Problem 2.4.11. Give an example of a non-trivial vector bundle.

Problem 2.4.12 (∗). A smooth endofunctor on the category of finite dimensional vector spaces is a gadget F so that

For any f : V → W a linear map between finite dimensional vector spaces there is F (f) :
F (V ) → F (W ) a linear map of finite dimensional vector spaces. Further, F distributes over
composition and carries identity maps to identity maps. Moreover, F is smooth in the sense
that the induced maps Hom(V,W ) → Hom(F (V ), F (W )) is smooth.

(a) Convince yourself that direct sum ⊕n, tensor product ⊗n, and exterior power Λn are smooth endofunc-
tors on the category of finite dimensional vector spaces.

(b) Show that any smooth endofunctor F on the category of finite dimensional vector spaces defines a
functorial construction on smooth vector bundles fibre by fibre; that is

Fix a base manifold B. Show that if f : E → E′ is a vector bundle map over B then there
is a vector bundle map F̂ (f) : F̂ (E) → F̂ (E′) so that on fibres F̂ (f)p : F̂ (E)p → F̂ (E′) is12

F (fp) : F (Ep) → F (E′
p).

[Moral Exercise: Extend the above to a functor F with domain FD-VECTn
R.]

Problem 2.4.13. Let f :M → N be a smooth map between smooth manifolds of equal dimension at least 2.
Show that f is an open map if all but finitely many points of M are regular.

Problem 2.4.14. Prove the fundamental theorem of algebra.

Problem 2.4.15 (Lee, 16-6 (slightly modified)). Prove that the following statements are equivalent for a
natural number n

(i) There exists a non-vanishing vector field on Sn;

(ii) There exists a smooth map V : Sn → Sn so that for all p ∈ Sn there holds V (p) ⊥ p with respect to the
usual do product on Rn+1;

(iii) The antipodal map A : Sn → Sn is smoothly homotopic to identity;

(iv) The antipodal map is orientation preserving;

(v) The number n is odd.

Problem 2.4.16. Consider the map F : RP 2 → R3 given by

F [x : y : z] =
(yz, xz, xy)

x2 + y2 + z2
.

1. Show that F is well-defined and smooth.
12at least up to some canonical identifications
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2. Is F an immersion?

Problem 2.4.17. Show that the space of vector fields on a smooth manifold of positive dimension is infinite
dimensional (as a real vector space).

Problem 2.4.18. Prove that there is a smooth vector field on S2 which vanishes at exactly one point.

Problem 2.4.19. Let M ⊆ Rn be a submanifold. Define NM ⊆M × Rn by

NM = {(p, v) : v ⊥ TpM}

and prove that NM is a vector bundle over M (called the normal bundle). Show TRn|M ∼= TM ⊕NM .

Problem 2.4.20. Let π : E →M be a fibre bundle with fibre F . Prove

(a) π is an open quotient map.

(b) If π is smooth, then it is a submersion.

(c) π is proper iff F is compact.

(d) E is compact iff both F and M are.

2.5 Submanifolds

Problem 2.5.1 (6410 Midterm). Identify the space Mn(R) of real n× n matrices with Rn2

.

(a) Show that GLn(R) is a submanifold of Mn(R).

(b) Show that the space Sn(R) of symmetric n× n matrices is a submanifold of Mn(R).

(c) Show that On(R) = {A ∈Mn(R) : AAT = I} is a submanifold of Mn(R).

Problem 2.5.2. Let F : M → M ′ be a smooth map of smooth manifolds with regular value c. Let N =
F−1(c) be a submanifold of M and let ι : N → M be the inclusion. Show that for any p ∈ N there holds
ι∗TpN = kerF∗ ⊆ TpM .

Problem 2.5.3. Show that if M and K are manifold of the same dimension with K compact and M not
compact, then K may not be submersed in M .

Problem 2.5.4 (UCLA, Fall 2005). Let N be an embedded submanifold of M . Show that if ξ, ζ are vector
fields on M tangent to N then the vector field [ξ, ζ] on M is also tangent to N .

Problem 2.5.5. Define regular submanifold.

Problem 2.5.6. Let M(n,m, k) ⊆ M(n,m) denote the collection of n × m matrices of rank k. Show that
M(n,m, k) is a regular submanifold of M(n,m) of dimension nm− (n− k)(m− k).

Problem 2.5.7. Let M ⊆ Rn be a submanifold. Let UM ⊆ TM denote those tangent vector of unit length
(under the usual identification TpRn ∼= Rn). Show that UM a submanifold. What is its dimension?

Problem 2.5.8. LetM be a smooth manifold with boundary,N a smooth manifold, and F :M → N smooth.
Show that if c ∈ N is a regular value of F and F |∂M then S = F−1(c) ⊆ M is a regular submanifold and
∂S = S ∩ ∂M .
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2.6 Partitions of Unity

Problem 2.6.1. Prove that any continuous function on a manifold is the uniform limit of smooth functions.

Problem 2.6.2 (∗). Show that every open cover of a manifold admits a subordinate partition of unity. You
may use the results of Problem 2.1.4 without proof.

Problem 2.6.3. Let M be a smooth manifold which is the union of open sets U, V . Show that the following
is an exact sequence

0 Ω(M) Ω(U)⊕ Ω(V ) Ω(U ∩ V ) 0
ω 7→(ω|U ,ω|V ) (ω,η) 7→ω|U∩V −η|U∩V

Problem 2.6.4. Show that a non-Hausdorff smooth manifold need not admit partitions of unity subordinate
to arbitrary open covers.

Problem 2.6.5 (New Mexico, 2006). Show that a smooth immersion is locally a smooth embedding.

Problem 2.6.6 (New Mexico, 2006). Show that if a Lie group G has a smooth action on manifold M then
each orbit is an immersed submanifold. Show that this need not be an embedded submanifold.

Problem 2.6.7 (∗). Show that a connected locally Euclidean space is second countable and Hausdorff if and
only if it admits partitions of unity subordinate to arbitrary open covers.13

Problem 2.6.8. A Riemannian metric on a smooth manifold M is, for each p ∈ M an inner product g :
TpM × TpM → R with the property that for any local coordinates (U, x) the maps gi,j : U → R given by

gi,j(p) = g

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
is smooth. Show that any manifold admits a Riemanian metric.

Problem 2.6.9 (Very Weak Whitney Embedding Theorem). Show that if M is a compact smooth manifold
thenM can be embedded in RK for someK. [Hint: Cover the manifold by finitely many charts and proceed
by “brute force”.]

Problem 2.6.10. Let M be a Riemannian manifold, that is a smooth manifold equipped with a Riemannian
metric as in 2.6.8. Let f :M → R be a smooth function.

(a) Prove that there exists a unique smooth vector field Xf on M with the property that for any smooth
vector field ξ on M there holds ⟨Xf , ξ⟩ = df(ξ).

(b) Prove that if c is a regular value of f and S = f−1(c) thencι∗TpS = {v ∈ TpM : ⟨Xf,p, v⟩p = 0} where
ι : S →M is the inclusion.

(c) Prove that if M is orientable then so is S.

2.7 Orientation

Problem 2.7.1. Show that the product of orientable manifolds is orientable.

Problem 2.7.2. For what values of n is RPn orientable.

Problem 2.7.3. Let F : Rn → R be smooth with regular value c. Prove that F−1(c) is orientable.

Problem 2.7.4 (Do Carmo, Ch 1). Show that a regular surface S ⊆ R3 is orientable if and only if there is a
smooth map N : S → R3 so that for all p ∈ S the vector N(p) is perpendicular to TpS and |N(p)| = 1.

Problem 2.7.5. Show that the tangent bundle and cotangent bundle of a smooth manifold are orientable.
13Thus, if you believe partitions of unity are important, you have to include Hasudorff and second countable in a definition of

manifold.
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Problem 2.7.6 (Do Carmo, Ch 1). Let M be a smooth manifold equipped with a properly discontinuous
smooth action of a group G.

1. Show that the orbit space M/G is orientable if and only if there is an orientation on M which is
preserved by each g ∈ G.

2. Show that the Möbius band is not orientable.

Problem 2.7.7. Is the Klein bottle orientable?

Problem 2.7.8. Show that a simply connected manifold is orientable. Show that if a manifold is covered by
two charts with connected intersection then the manifold is orientable.

Problem 2.7.9. Show that any 1-dimensional manifold is orientable.

Problem 2.7.10. Show that if M is an orientable smooth manifold then ∂M is orientable.

Problem 2.7.11. Show that every orientation reversing diffeomorphism of R has a fixed point.

2.8 Differential Forms

Problem 2.8.1 (6410 Midterm). Consider the form ω = −y
x2+y2 dx+ x

x2+y2 dy on R2 ∖ {0}.

(a) Compute the integral of ω along any circle of radius r centered on the origin.

(b) Is ω exact on R2 ∖ {0}?

Problem 2.8.2. Prove the following generalization of integration by parts: If M is an n-manifold without
boundary, ω ∈ Ωk

c (M), and η ∈ Ωn−k−1
c (M) then∫

M

ω ∧ dη = (−1)k
∫
M

(dω) ∧ η.

Problem 2.8.3. Let M be a smooth manifold of dimension n. For any k, define the k-th de Rham cohomology
group by

Hk(M) =
ker(d : Ωk(M) → Ωk−1(M))

im(d : Ωk+1(M) → Ωk(M))

and its compactly supported variant

Hk
c (M) =

ker(d : Ωk
c (M) → Ωk−1

c (M))

im(d : Ωk+1
c (M) → Ωk

c (M))
.

Show that the following is a well defined linear map:

I : Hk
c (M)⊗Hn−k(M) → R, I([ω]⊗ [η]) =

∫
M

ω ∧ η.

Problem 2.8.4 (∗). With notation as in Problem 2.7.3, show that H1(S1) ∼= R. [Hint: use the first isomor-
phism theorem.]

Problem 2.8.5. Find an n-manifold M without boundary and ω ∈ Ωn−1(M) so that dω is compactly sup-
ported yet

∫
M
dω = 1. What is wrong with the following application of Stokes’∫

M

dω =

∫
∂M

ω = 0?
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Problem 2.8.6. Let M be a connected smooth n-manifold. Define an equivalence relation on ΛnT ∗M by
ωp ∼ ηp iff ωp = ληp for λ ∈ R>0. Denote the equivalence classes of this relation by [ωp]. Define the oriented
double cover of M by

M̃ = {(p, [ωp]) : p ∈M and ω ∈ Ωn(M)}.

Describe a topology on M̃ so that

(i) The map π : M̃ →M by projection in the first coordinate is a two sheeted covering projection.

(ii) The manifold M is oriented if and only if M̃ is disconnected.

Use this to show that M is orientable if π1(M) has no subgroup of index two.

Problem 2.8.7 (Tamu, Winter 2022). Fix a smooth manifold with vector fields ξ, ζ and 1-form ω. Prove that

(dω)(ξ, ζ) = ξ(ω(ζ))− ζ(ω(ξ))− ω([ξ, ζ]).

Problem 2.8.8 (UCLA, Spring 2022). Let M be a closed n-manifold with volume form ω. For any vector
field ξ on M , the divergence div(ξ) of ξ is that smooth function so that

Lξω = div(ξ)ω

where Lξ is the Lie derivative.

(a) Show that ∫
M

div(ξ)ω = 0.

(b) Express div(ξ) in local coordinates.

Problem 2.8.9 (UCLA, Fall 2021). Show that

ker

(∫
: Ωn

c (Rn
)
→ R

)
= dΩn−1

c (Rn)

Problem 2.8.10 (UCLA, Fall 2002). Let P,Q,R : R3 → R be smooth functions which vanish outside of a
bounded rectangle R. Prove directly (that is, without invoking Stokes’) that∫

R

d(P dx ∧ dy +Q dx ∧ dz +R dy ∧ dz) = 0.

Problem 2.8.11. Show that if α is a non-vanishing smooth 1-form on a manifold M , then the only k-forms
ω so that α ∧ ω = 0 are those for which there is a smooth (k − 1)-form γ so that ω = α ∧ γ.

Problem 2.8.12 (Lee, Ex. 14.18). Let f : R2 → R3 be given by f(u, v) = (u, v, u2 − v2). Let ω ∈ Ω2(R3) be
ω = ydx ∧ dz + xdy ∧ dz. Compute f∗ω

Problem 2.8.13 (Cartan’s Lemma). Let M be a smooth manifold and ω1, ..., ωk a collection of 1-forms which
are linearly independent at each point of M . Given 1-forms α1, ..., αk with the property that

k∑
i=1

αi ∧ ωi

show that each αi may be written as a sooth linear combination of the ωi.

Problem 2.8.14 (UCLA, Fall 2013, (∗)). Let M be a connected manifold. Show that if ω is a smooth 1-form
so that for any piecewise smooth closed curve c in M there holds

∫
c
ω = 0 then ω is exact.
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Problem 2.8.15. Let M be a connected, oriented n-manifold. Prove that

ker

(∫
: Ωn

c (M
)
→ R

)
= dΩn−1

c (M)

You may assume the case of M = Rn. That is, a compactly supported top form is exact if and only if it is
the exterior derivative of a compactly supported form.

Problem 2.8.16. Show that ifM is a connected, oriented, non-compact smooth n-manifold, then ever closed
n-form is exact. You may assume 2.8.15 and 2.2.5.

Problem 2.8.17 (∗). Let M be a smooth, oriented manifold with Riemannian metric g. That is, for each
p ∈ M an inner product g : TpM × TpM → R with the property that for any local coordinates (U, x) the
maps gi,j : U → R given by

gi,j(p) = g

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
is smooth.

(a) Prove that there exists a unique top form ωg with the property that for any orthonormal, oriented, local
frame ξ1, ..., ξn for TM there holds

ωg(ξ1, ..., ξn) = 1.

(b) Prove that for any choice of local coordinate (U, x) there holds

ωg|U =
√

det(gi,j)dx
1 ∧ · · · ∧ dxn

Problem 2.8.18. Compute ω(X,Y ) for ω = xdx ∧ dy + y2dy ∧ dz and X = x∂x + y∂y and Y = sin(xy)∂z .

Problem 2.8.19. Show that if v1, ..., vn are n-linearly independent vectors in Rn, the the volume of the n-
parallelogram

P =

{∑
i

λivi : λi ∈ [0, 1]

}
they bound is given by

µ(P ) = |det{v1, ..., vn}|.

Problem 2.8.20. Prove Green’s theorem from Stokes’ theorem.

Problem 2.8.21. Let ω be the 2-form on Cn given by

ω =
n∑

i=1

dxi ∧ dyi.

Define J ∈ GL2n(R) to be the block diagonal matrix whose blocks are

Ji =

(
0 −1

1 0

)
.

Let A ∈ GL2nR. Show that A∗ω = ω if and only if J = AtJA.

Problem 2.8.22 (Tu, 18.1). Prove that a k-form ω on a manifold M is smooth if and only if for every
X1, ..., Xk ∈ X(M) the function ω(X1, ..., Xk) is smooth.

Problem 2.8.23 (Tu, 18.3). Prove carefully that if F : M → N is smooth and α, β are k and ℓ forms on N
then

F ∗(α ∧ β) = F ∗(α) ∧ F ∗(β).

Problem 2.8.24. Let π :M → N be a smooth surjective submersion with connected fibres. A tangent vector
Xp ∈ TpM is called vertical when π∗(Xp) = 0. Show that if ω ∈ Ωk(M) then ω = π∗η for η ∈ Ωk(N) if and
only if iXp

ωp = 0 and iXp
dωp = 0 for all p ∈M and vertical Xp.
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2.9 Linear Algebra

Problem 2.9.1. Let V be a finite dimensional real vector space. Let Sn act on V ⊗n by

σ · v1 ⊗ · · · ⊗ vn = (−1)|σ|vσ(1) ⊗ · · · ⊗ vσ(n).

Show that V ⊗n/Sn ∼= An(V ).

Problem 2.9.2. Let V and W be finite dimensional real vector spaces. Calculate An(V ⊕ W ) in terms of
Ak(V ) and Ak(W ) for various values k.

2.10 Vector Fields and Flows

Problem 2.10.1 (∗). Let M be a smooth manifold with boundary and let ν be a vector field on M which is
inward pointing on ∂M . Prove that there exists a smooth function δ : ∂M → R≥0 and a smooth embedding
Φ : Pδ →M where

Pδ = {(p, t) ∈ ∂M × R : 0 ≤ t < δ(p)}

so that Φ(Pδ) is a neighborhood of ∂M and for each p ∈ ∂M the curve Φ(p, t) is an integral curve for ν.
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