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Abstract

This thesis is an introduction to the study of convergence spaces, a generalization
of topological spaces which replaces the primitive notion of open sets with a struc-
ture governing the convergence of filters.





Introduction

As one learns math, convergence is encountered in an increasingly general context.
Usually, convergence is first encountered in the setting of real, or possibly complex,
numbers and is a fairly intuitive idea: a sequence of real numbers converges to a
point when it is eventually close to that point no matter how strictly one interprets
“close.” This makes sense word for word in higher dimensions, and so one obtains
the notion of a sequence of points converging to another point in Euclidean Rn.

In fact, Rn has vastly more structure than is needed for convergence - direction,
volume, an algebraic structure, etc. All one needs to formulate something like the
convergence seen in the real numbers is a distance notion, and so convergence
readily generalizes to any setting equipped with a way to measure distance, i.e. a
metric space.

In these spaces - R, C, Rn, and metric spaces - convergence is dictated by the ge-
ometric/topological structure of the space. That is, if one knew enough about the
topology on the space, one could answer any question about the convergence of
sequences. For instance, if one applies a continuous function to a converging se-
quence, the result is still a converging sequence. Significantly, the converse is also
true; if one knew enough about how sequences behaved in a space, one could
reconstruct any desired topological data. For instance, if a function always sends
converging sequences to converging sequences (and the limit of the input sequence
to the limit of the output sequence), then the function must be continuous.

One might next encounter convergence of sequences in a topological space, a set-
ting much more general than metric spaces. As before, the structure of a topo-
logical space informs the convergence of sequences, but here, the other direction
breaks down. In general, one cannot use sequences to detect all topological proper-
ties. However, all is not lost. One can combat the increased generality of topologi-
cal spaces by introducing a more general notion of sequence: either filters or nets.
These will be defined in Chapter 1 where it will be seen that one can define con-
vergence for nets and filters generalizing the convergence of sequences in a natural
manner. The convergence of these objects can then be used to detect topological
properties.

There is yet another facet to the story of sequential convergence. There are no-
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tions of convergence of sequences common in analysis, e.g. convergence almost
everywhere in a measure space, which cannot be determined by a notion of dis-
tance or topology.

This thesis is an introduction to the study of convergence spaces. Rather than place
a structure (e.g a distance notion or topology) on a set and allow that structure to
determine how sequences, nets, and filters converge, the idea of a convergence
space is to state directly what it means for filters to converge. The axioms gov-
erning theses spaces generalize the behavior of filters in topological space so that
all topological spaces will be convergence spaces. However, they will be general
enough to obtain non-topological modes of convergence.

Chapter 1 sets the stage by building up the necessary machinery of filters which is
then used throughout later chapters. However, it is the feeling of this author that it
is not immediate from the definition how filters generalize sequences; they appear
to be an entirely different sort of object. Thus, rather than begin by introducing
filters, nets are defined first. These objects are much more sequence-like at first
glance. From nets, one can then obtain filters as a sort of compactification of the
convergence related properties carried by nets. Indeed, it will be shown that filters
and nets are equivalent and interchangeable.

In Chapter 2, convergence spaces will be properly introduced along with a cor-
responding notion of continuous map. We will see that all topological spaces are
convergence spaces and that almost everywhere convergence can also be described
as a convergence space. Following this, basic constructions and properties involv-
ing convergence spaces will be discussed.

In topology, there is no canonical topology to place on spaces of continuous func-
tions. In Chapter 3, it will be shown that this is not the case for convergence spaces.
This chapter explores properties of this canonical convergence structure on func-
tion spaces.

Lastly, Chapter 4 discusses convergence vector spaces, the convergence analogue
to topological vector spaces. This chapter concludes with a discussion of dual
spaces and reflexivity.

In an effort to make this work more self contained, several appendices are in-
cluded. Appendices A and D addresses basic topics in category theory and topo-
logical vector spaces. Appendix C addresses several specific results from general
topology which are needed to establish results in the body of the thesis. Appendix
B formalizes the equivalence between nets and filters using category theory and
then shows how either can be used to define convergence spaces, results which are
interesting but somewhat tangential to the body of the text.



Chapter 1

Preliminaries: Nets and Filters

In this chapter, we introduce nets and filters and develop their basic properties
and constructions which will be used throughout the rest of the text. Most of the
results on filters may be found in Chapter 2.1 of [Pat14] and the results on net-filter
equivalence are inspired by the exposition in [Nar].

1.1 A Problem and Its Solution

The convergence of sequences plays an important role in analysis and topology.
In fact, the topological properties of metric spaces (continuity, compactness, open
and closed sets, etc.) are completely characterized by convergence of sequences.
However, this convergence does not fully characterize these topological properties
in general. Recall the following

Definition 1.1.1. If X is a topological space, (xn) a sequence in X , and x ∈ X then
we say (xn) converges to x and write xn → x when for each U 3 x open we have
some N ∈ N so that xn ∈ U for all n ≥ N .

Definition 1.1.2. A mapping of topological spaces f : X → Y is called sequentially
continuous when for all x ∈ X and sequences xn → x we have f(xn)→ f(x) in Y .

Definition 1.1.3. A mapping of topological spaces f : X → Y is called continuous
when for each open U ⊆ Y one has that f−1(U) is open in X .

It is well known that all continuous functions are sequentially continuous. How-
ever, the converse fails in general.

Example 1.1.4. Let X = R with the countable-complement topology, that is non-
empty U ⊆ R is open if and only if X r U is finite or countably infinite, and
Y = R with the discrete topology (i.e. all sets are open). If (xn) is a sequence in X
converging to a point x ∈ X , then one can see that (xn) must eventually be constant
with value x. Simply consider

U = X r {xn : n ∈ N ∧ xn 6= x}
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which is an open neighborhood of x. Therefore, any function f : X → Y is se-
quentially continuous. However, since Y is discrete and X is not, there must be
functions f : X → Y which fail to be continuous.

More interesting is the fact that even fairly tame notions of sequential convergence
can fail to be topological.

Example 1.1.5. Give the interval [0, 1] its usual Lebesgue measure. Let

X = {f : [0, 1]→ [0, 1] : f is measurable}.

Ordman shows in [Ord66] that there is not a topology on X so that if (fn) is a se-
quence in X and f ∈ X then fn → f in the topology iff fn → f almost everywhere.

The first problem, that continuity and sequential continuity are not equivalent and
more generally that the convergence of sequences does not characterize topological
properties, may be resolved by considering a generalized notion of sequences.

Definition 1.1.6. A directed set is a non-empty set I along with a relation ≤ which
is reflexive, transitive, and such that for each i, j ∈ I there exists k ∈ I such that
i, j ≤ k.

Definition 1.1.7. A net in a set X is a function α : I → X where I is a directed set.
If i ∈ I , we usually write αi for α(i). If α is a net, we write dom(α) for the directed
set which is the domain of α.

Since N with its usual order is a directed set, we see that sequences are merely nets
with domain N. Given this, there is a straightforward way to define the conver-
gence of nets in a topological space.

Definition 1.1.8. If α is a net in a set X and U ⊆ X , say that α is eventually in U and
write α ∈ev U when there is some i0 ∈ dom(α) so that for all i ≥ i0 we have αi ∈ U .

Definition 1.1.9. If X is a topological space, α a net in X , and x ∈ X , we say that α
converges to x and write α→ x when for all neighborhoods U of x we have α ∈ev U .

This is a clear generalization of Definition 1.1.2. We may now obtain the following
results.

Proposition 1.1.10. Let X and Y be topological spaces. A function f : X → Y is
continuous if and only if for all x ∈ X and all nets α→ x we have f ◦ α = f(α)→ x.

Proof. Suppose f : X → Y is continuous, x ∈ X , and α is a net in X with α → x.
Suppose U is a neighborhood of f(x). Since f is continuous, we have that f−1(U)
is a neighborhood of x. Since α → x, we have that α ∈ev f

−1(U). It is then clear
that f(α) ∈ev f(f−1(U)) ⊆ U . Thus, we have that f(α)→ f(x) as desired.

Now, suppose that for all x ∈ X and all nets α → x we have f ◦ α = f(α) → f(x).
Suppose x ∈ X and U is a neighborhood of f(x). Define

Nx = {V ⊆ X : V is a neighborhood of x}.
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One may check that when this set is ordered by reverse inclusion of sets it becomes
a directed set. Next, define I = {(z, V ) : z ∈ V ∈ Nx} made into a directed set
by considering the ordering on the second coordinate inherited from Nx. Finally,
define the net α : I → X by α(z, V ) = z for all (z, V ) ∈ I . Note that if W is a
neighborhood of x we may pick z ∈ W and see that for all (z′,W ′) ≥ (z,W ), we
have z′ ∈ W ′ ⊆ W so that α(z′,W ′) ∈ W . We have that α ∈ev W . Therefore,
α → x. It follows that f(α) → f(x). We then have that f(α) ∈ev U . From this,
α ∈ev f

−1(U). We may then find some neighborhood W of x and some z ∈ W so
that for all (z′,W ′) ∈ I with W ′ ⊆ W we have z′ ∈ f−1(U). From this, we have
that W ⊆ f−1(U) and f−1(U) a neighborhood of x. Therefore, f is continuous as
desired. QED

Moreover this result is in no way special. As will be seen, all topological properties
are described by convergence of nets in ways analogous to how sequences describe
these properties in metric spaces. However, simply swapping nets for sequences
cannot fix the issue raised by Example 1.1.4, that some notions of convergence are
fundamentally not topological.

Nets do offer a way to resolve this issue. In principal, we will replace the axioms
of topological spaces with axioms describing net convergence. Then, topological
definitions (of continuity, compactness, etc.) can be defined in such a “convergence
space” via their net characterizations from topology. As will be seen, the thereby
obtained notion of convergence space will contain the notion of topological spaces
but also spaces allowing other notions of convergence, e.g. the almost everywhere
convergence of Example 1.1.4.

However, there is a slight obstruction to this program. The collection of nets in
a non-empty set is not itself a set. To see this, pick a non-empty set X and suppose
there is a set N of nets in X . One can then consider the set dom(N) of directed sets
appearing as domains of nets in N . But as any set can be made into a directed set,
and any directed set can be mapped to X by the constant net at some point, one
sees that dom(N) contains all sets. This is impossible.

A way to bypass this obstruction arises from the following observation. As far
as convergence is concerned, the vast universe of nets is often redundant. For
instance, there is no need to distinguish between constant nets with different do-
mains or between eventually constant nets and constant nets. This suggests that it
is possible to shrink the class of nets into a well behaved set by identifying together
those nets with the same convergence properties. The next section will implement
the technical details of this plan.

1.2 Filters

The proof of Proposition 1.1.10 introduces an important object
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Definition 1.2.1. If X is a topological space and x ∈ X , we define

Nx = {U ⊆ X : U is a neighborhood of x}

which is called the neighborhood filter at x. Note that we do not require neighbor-
hoods to be open.

Indeed, this object controls the convergence of nets in topological spaces.

Definition 1.2.2. If X is a set and α a net in X , define the eventuality filter of α by

E(α) = {U ⊆ X : α ∈ev U}.

Proposition 1.2.3. If X is a topological space and α a net in X , then for all x ∈ X we
have α→ x if and only if E(α) ⊇ Nx.

Proof. Suppose α → x. If U ∈ Nx, then U contains an open set V containing x.
Then α ∈ev V so α ∈ev U and U ∈ Nx. On the other hand, if E(α) ⊇ Nx then
α ∈ev U for every open set containing x and α→ x as desired. QED

The eventuality filter of a net and the neighborhood filter of a point are merely
instances of a seemingly more general construction.

Notation 1.2.4. If X is a set, we write P(X) for the powerset of X

Definition 1.2.5. If X is a set, a collection F ⊆ P(X) is called a filter on X when

1. X ∈ F but ∅ /∈ F ;

2. if F ∈ F and X ⊇ G ⊇ F then G ∈ F ;

3. if F,G ∈ F then F ∩G ∈ F .

The set of filters on X will be denoted Φ(X).

With this definition, it is not hard to verify that the eventuality filter of a net and
the neighborhood filter of a point are filters. Beyond this, however, it may not be
clear what a filter is, aside from this formal definition. We give some examples of
filters.

Example 1.2.6. If X is an infinite set,

F = {F ⊆ X : X r F is finite}

is called the Frechét filter on X .

Example 1.2.7. If (X,Σ, µ) is a measure space with µ(X) = 1, then

F = {F ⊆ X : ∃F ′ ∈ Σ such that F ′ ⊆ F ∧ µ(F ′) = 1}

is a filter on X .
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Proposition 1.2.8. Suppose X is a set and B is a collection of subsets of X so that for all
B1, ..., Bn ∈ B we have

⋂n
i=1 Bi 6= ∅, then

[B] =

{
F ⊆ X : ∃B1, ..., Bn ∈ B such that F ⊇

n⋂
i=1

Bn

}
is a filter on X . This is called the filter generated by B. One calls B the base of [B].

Proof. Certainly X ∈ [B] and ∅ /∈ [B] since for all B1, ..., Bn ∈ B we have
⋂n
i=1 Bn 6=

∅. If X ⊇ G ⊇ F and F ∈ [B], there is finite B′ ⊆ B with G ⊇ F ⊇
⋂
B′ so

that G ∈ [B]. Lastly, suppose F,G ∈ [B]. There are then finite B′,B′′ ⊆ B so
that F ⊇

⋂
B′ and G ⊇

⋂
B′′. We then have that F ∩ G ⊇

⋂
(B′ ∪ B′′) so that

F ∩G ∈ [B]. QED

Remark 1.2.9. If B is closed under finite intersections, then

[B] = {F ⊆ X : ∃B ∈ B(F ⊇ B)}.

Notation 1.2.10. If B ⊆ X , we write [B] for [{B}], and if B = {x} we write [x] for
[B]. A filter of the form [x] is called a point filter.

Despite these examples which seem far removed from nets, any filter on a set may
be realized as the eventuality filter of some net.

Proposition 1.2.11. If X is a set and F a filter on X , then there exists a net η(F) on X
so that the eventuality filter of η(F) is F .

Proof. Define

I = {(x, F ) ∈ X ×F : x ∈ F}

which we make into a directed set by reverse inclusion on the second coordinate.
We then create the net η(F) : I → X by η(F)(x, F ) = x. One may then verify that
E(η(F)) = F . QED

If F is a filter on X , we call the net constructed in the proof of Proposition 1.2.11
the derived net of F . The construction of the derived net is not particularly signif-
icant (though it is helpful to have a canonical definition); what matters is that the
eventuality filter of the derived net of F is F . To justify this, note the following
result.

Proposition 1.2.12. If X is a topological space, x ∈ X , and α, β are nets in X with
E(α) = E(β) then α→ x if and only if β → x.

Proof. Suppose α → x. Then E(α) ⊇ Nx. So E(β) ⊇ Nx and β → x. If β → x, an
identical argument suffices to finish the proof. QED

Thus, since we care about nets because of their convergence properties, we are en-
tirely justified in neglecting to differentiate between nets with the same eventuality
filter. We formalize this.
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Definition 1.2.13. If α and β are nets in a set, we say that α and β are equivalent and
write α ∼ β when E(α) = E(β).

So far, we have a way to turn any net into a filter and any filter into a net. A natural
question is whether this gives a one-to-one correspondence. Once one applies the
above notion of equivalence, the answer is yes.

Theorem 1.2.14. Fix a set X . Suppose α and β are nets in X and F ,G are filters on X .

1. E(η(F)) = F ;

2. η(E(α)) ∼ α.

Proof. (1) This is merely Proposition 1.2.11.

(2) By (1) we have that E(η(E(α))) = E(α) so that η(E(α)) ∼ α by definition. QED

Corollary 1.2.15. If X is a set and F ,G are filters on X , then F = G if and only if
η(F) = η(G).

Morally, this means that nets and filters “are the same thing” for the purpose of
convergence, an equivalence which is made even more precise in Appendix B.1.
Alternatively, one could think of filters as equivalence classes of nets modulo the
equivalence of nets given above.

In light of the equivalence between nets and filters, one can use the convergence of
nets in a topological space to define the convergence of filters.

Definition 1.2.16. If X is a topological space, x ∈ X , and F is a filter on X , say that
F converges to x and write F → x when η(F) → x. By Proposition 1.2.3, we have
that F → x if and only if F ⊇ Nx.

The concept of a filter converging, along with the equivalence between nets and
filters, bypasses the problems discussed at the end of Section 1.1. The class of nets
in a set may not be a set, but convergence only distinguishes between nets up to
their eventuality filter, and the collection of filters is a set. Thus, instead of defin-
ing convergence spaces by imposing axioms governing net convergence, we will
instead place conditions on the convergence of filters.

This section ends with a result on eventually constant nets.

Proposition 1.2.17. If X is a set and α is a net in X which eventually has value x, then
E(α) = [x] and η([x]) ∼ α.

Proof. We prove E(α) = [x] first. Certainly if x ∈ F ⊆ X , then α ∈ev F . Thus
E(α) ⊇ [x]. Further, if α ∈ev F ⊆ X , then it must be that x ∈ F . Thus E(α) ⊆ [x]
and E(α) = [x] as desired.

We then have by Theorem 1.2.14

α ∼ η(E(α)) = η([x])

as desired. QED
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Proposition 1.2.18. If X is a topological space with x ∈ X , then [x]→ x.

Proof. This follows immediately from the fact that η([x]) is equivalent to a constant
net at x. QED

1.3 Subnets

Recall that a metric space is compact if and only if every sequence has a converging
subsequence. If there is any hope of extending this result to nets, one must have a
notion of subnet. A problem arises in that there are multiple definitions of subnet.
The terminology and results on subnets here is largely taken from [Sch97].

Definition 1.3.1. Suppose X is a set and α and β are nets in X , then

1. β is a subnet in the sense of Aarnes and Andenæs or simply an AA subnet of α
when one of the following equivalent conditions holds

(a) For all U ⊆ X with α ∈ev U one has β ∈ev U ;

(b) E(β) ⊇ E(α).

2. β is a Kelley subnet of α when there exists f : dom(β)→ dom(α) so that

(a) β = α ◦ f ;

(b) f is strongly final, that is for every a ∈ dom(α), there exists b0 ∈ dom(β)
so that f(b) ≥ a whenever b ≥ b0;

3. β is a Willard subnet of α when there exists f : dom β → domα so that

(a) β = α ◦ f ;

(b) f is monotone, that is for every a, b ∈ dom(β) with a ≥ b there holds
f(a) ≥ f(b);

(c) f is final, that is for every a ∈ dom(α), there exists b0 ∈ dom(β) so that
f(b0) ≥ a.

The term subnet will always refer to AA subnet unless otherwise qualified.

The following summarizes the dependencies of these definition:{
Willard

}
⊂
{

Kelley
}
⊂
{

AA
}

It is easy to verify the above containments. They follow immediately from the def-
initions. The following examples from [Sch97] show that the these containments
are proper.

Example 1.3.2. The net - aka sequence - (2, 1, 4, 3, 6, 5, ...) is a Kelley subnet of (1, 2, 3, 4, 5, 6, ...).
However, it is not a Willard subnet.
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Example 1.3.3. The net - aka sequence - (0, 5, 6, 7, 8, ...) is an AA subnet of (1, 5, 6, 7, 8, ...).
However, it is not a Kelley subnet.

One should also note that none of the above notions of subnet are equivalent to
subsequences when the directed set is N. For instance (1, 1, 2, 2, 2, ...) is a Willard
subnet of (1, 2, 2, 2, 2, ...) but not a subsequence in the traditional sense.

Theorem 1.3.4. Fix a set X . If α, β are nets in X and F ,G are filters on X , then G ⊇ F
if and only if η(G) is a subnet of η(F).

Proof. Suppose G ⊇ F . We then have by Theorem 1.2.14

E(η(G)) = G ⊇ F = E(η(F))

so that η(G) is a subnet of η(F) by definition.

If η(G) is a subnet of η(F), then again by Theorem 1.2.14 and definition of sub-
net

G = E(η(G)) ⊇ E(η(F)) = F

as desired. QED

When F ,G ∈ Φ(X) and G ⊇ F one says that G extends F .

The above result morally states that subnets and filter extensions are equivalent
and is a key reason why AA subnets are taken here as the correct notion of subnet.
However, those who prefer Willard subnets may be consoled by the corollary to
the following result.

Lemma 1.3.5. Suppose X is a set and α, β, and γ are nets. The following are equivalent.

1. F ∩G ∩H 6= ∅ for all F ∈ E(α) and G ∈ E(β) and H ∈ E(γ).

2. M = {M ⊇ F ∩G ∩H : F ∈ E(α) ∧ G ∈ E(β) ∧ H ∈ E(γ)} is a filter on X .

3. There exists a filter G ⊇ E(α), E(β), E(γ).

4. There exists a net η which is a subnet of α, β, γ.

5. There exists a Willard subnet ω of α, β, γ such that whenever ζ is an AA subnet of
α, β, γ with ω an AA subnet of ζ , we have ω ∼ ζ .

Proof. (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1) is clear. Further, (5) =⇒ (4) is
immediate. It is left to show that (1) - (4) imply (5).

Assume (1) - (4). For each a ∈ A and b ∈ B and c ∈ C, define

Ta,b,c = {α(a′) : a′ ≥ a} ∩ {β(b′) : b′ ≥ b} ∩ {γ(c′) : c′ ≥ c}.
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Condition (1) tells us each Ta,b,c is non-empty. Let

Ω = {(a, b, c) ∈ A×B × C : α(a) = β(b) = γ(c)}

be a directed set with the product order. The fact that each tail Ta,b,c is non-empty
implies that Ω is cofinal in A×B ×C; that is, for each t ∈ A×B ×C there is s ∈ Ω
with t ≤ s. It follows that the projections from Ω to A,B,C are final. Certainly,
they are monotone. We define ω : Ω → X by ω(a, b, c) = α(a) = β(b) = γ(c). It is
then clear that ω is a Willard subnet of α, β, γ.

We next claim that E(ω) = M. It is clear that E(ω) ⊇ M since M is the mini-
mal filter extending E(α), E(β), E(γ). Further, suppose ω ∈ev U ⊆ X . We have
some (a, b, c) ∈ Ω so that for all (a′, b′, c′) ≥ (a, b, c) we have ω(a′, b′, c′) ∈ U . But this
is U ⊇ Ta,b,c. Since Ta,b,c ∈M, we have U ∈M. Thus,M = E(ω).

Further, suppose ζ is a subnet of α, β, γ and ω is a subnet of ζ . Then E(ζ) ⊇
E(α), E(γ), E(β). ButM = E(ω) is the minimal filter with this property, so E(ζ) ⊇
E(ω) and ζ is a subnet of ω. Thus, ω ∼ ζ . QED

Remark 1.3.6. Observe that the above lemma can be adapted to any finite number
of nets.

Corollary 1.3.7. Suppose α is a net in a set X and β is a subnet of α. There exists a
Willard subnet β′ of α which is equivalent to β.

Proof. We apply the previous lemma to α and β. Clearly α, β has subnet β. There
is thus a Willard subnet β′ of α, β so that whenever ζ is another subnet of α, β with
β′ a subnet of ζ , we have β ∼ ζ . Let ζ = β. We have that β′ ∼ β. QED

Thus, whenever a subnet is produced, one may (up to equivalence) choose that
subnet to be Willard.

Subnets and filter extensions interact with convergence in topological spaces ex-
actly as desired.

Proposition 1.3.8. Suppose X is a topological space with x ∈ X and that α and F are
respectively a net and filter in X converging to x.

1. If G ∈ Φ(X) extends F , then G → x.

2. If β is a subnet of α, then β → x.

Proof. (1) By Proposition 1.2.3, we have since F → x that F ⊇ Nx. Since G ⊇ F , we
have that G ⊇ Nx, and again by Proposition 1.2.3 that G → x.

(2) Since α → x, we have that E(α) → x. By definition of subnet, we have that
E(β) ⊇ E(α). By (1), we have that E(β)→ x. Thus, η(E(β))→ x. Since η(E(β)) ∼ β,
we have by Proposition 1.2.12 that β → x. QED
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Notation 1.3.9. As with sequences, it is often the case that when a net is not even-
tually within a set, it is desirable to take a subnet always outside of the set. The
method for doing this is clear: simply restrict the net to a properly chosen cofinal
subset of the domain. We end this section with a filter analogue of this process.
Suppose F is a filter on a set X and A ⊆ X is such that A ∩ F 6= ∅ for each F ∈ F .
We may then construct the filter on X

F ∩ A := [{F ∩ A : F ∈ F}]

so that F ∩ A ⊇ F and A ∈ F ∩ A. Sometimes, we also wish to consider this as a
filter on A. Thus, we define F|A ∈ Φ(A) by

F|A = {F ∩ A ⊆ A : F ∈ F}.

As subsets of X , the filter F|A is a filter base for F ∩ A in X . Thus, we write
[F|A] = F ∩ A. If the set is not clear, we may also write [F|A]X for F ∩ A.

1.4 Ultrafilters and Universal Nets

Lemma 1.4.1. Fix a set X and a filter U on X . The following are equivalent:

1. U is maximal under containment, that is for all F ∈ Φ(X) if F ⊇ U then F = U ;

2. For all A ⊆ X either A ∈ U or X r A ∈ U .

Proof. Suppose U is maximal under containment. Suppose A ⊆ X . Consider

B = {A ∩ U : U ∈ U}.

If B 3 ∅ then there is U ∈ U with U ⊆ X r A. Thus, X r A ∈ U by definition of
filter. Otherwise, we may have a filter [B] ∈ Φ(X). If U ∈ U , then A ∩ U ∈ B and
A ∩ U ⊆ U so that U ∈ [B]. Therefore we have [B] ⊇ U and [B] = U by maximality.
But then X ∈ U and A = A ∩X ∈ U . So, as desired, either A ∈ U or X r A ∈ U .

Now, suppose that for all A ⊆ X either A ∈ U or X r A ∈ U . Suppose F ∈ Φ(X)
and F ⊇ U . Suppose F ∈ F . Since X r F /∈ U , as otherwise X r F ∈ F and
∅ = F ∩ (X r F ) ∈ F which is impossible, we have F ∈ U . Therefore, U ⊇ F and
U = F . QED

Definition 1.4.2. Any filter satisfying either of the equivalent conditions of Lemma 1.4.1
is called an ultrafilter.

Corollary 1.4.3. If U is an ultrafilter on a set X and

U1 ∪ U2 ∈ U

then U1 ∈ U or U2 ∈ U .
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Proof. If U1 /∈ U , then X r U1 ∈ U . We then have U2 ⊇ (U1 ∪ U2) ∩ (X r U1) ∈ U so
that U2 ∈ U as desired. QED

Unsurprisingly, there is a parallel notion for nets.

Definition 1.4.4. A net is called universal when it is equivalent to each of its sub-
nets.

Theorem 1.4.5. Suppose X is a set, ω is a net in X , and U a filter on X .

1. ω is universal if and only if E(ω) is an ultrafilter.

2. U is an ultrafilter if and only if η(U) is universal.

Proof. (1) Suppose ω is universal. Let F ⊇ E(ω). We then have by Theorem 1.3.4
that η(F) is a subnet of ω since ω is universal. This means that

E(ω) = E(η(F)) = F

and E(ω) is an ultrafilter.

Next, suppose E(w) is an ultrafilter. Suppose α is a subnet of ω. Then we have
E(α) ⊇ E(ω) by Theorem 1.3.4 and E(α) = E(ω) by definition of ultrafilter. We then
have that α ∼ ω and ω is universal by definition.

(2) Suppose U is an ultrafilter. Then since U = E(η(U)) we have η(U) is an ul-
trafilter by (1). On the other hand, if η(U) is universal, then by (1) we have that
U = E(η(U)) is universal. QED

An entirely reasonable question is whether ultrafilters/universal nets exist.

Example 1.4.6. If X is a set and x ∈ X , then [x] is an ultrafilter on X .

However, for less trivial examples one must rely on the following result.

Theorem 1.4.7 (Ultrafilter Lemma). If F is a filter on a set X , there exists an ultrafilter
U on X with U ⊇ F .

Proof. Define

P = {G ∈ Φ(X) : G ⊇ F}

which is non-empty since F ∈ P . Consider P as a poset under set containment.
Let C ⊆ P be a chain. It is easy to check that

⋃
C is an upper bound for C in P . By

Zorn’s Lemma, we have thatP has a maximal element. This is exactly an ultrafilter
extension of F . QED

Corollary 1.4.8. Every net has a universal subnet.

Corollary 1.4.9. There exist ultra filters which are not point filters.
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Proof. Let X be any infinite set and F be the Frechét filter on X ,

F = {F ⊆ X : X r F is finite}.

By the Ultrafilter Lemma, there is an ultrafilter U ⊇ F . Since for each x ∈ X one
has X r {x} ∈ F so that {x} cannot be in U . QED

As it turns out, the Ultrafilter Lemma, while strictly weaker than the Axiom of
Choice, is not provable from ZF alone, nor ZF along with Dependent Choice.1 As
a consequence, it is not possible to produce explicit examples of ultrafilters which
are not generated by a singe point.

1.5 Functions, Nets, and Filters

Notation 1.5.1. If α is a net in X and f : X → Y is a mapping of sets, we write f(α)
for the net f ◦ α in Y .

Proposition 1.5.2. If F is a filter on X and f : X → Y is a function, then the image
filter

f(F) = [{f(F ) ⊆ Y : F ∈ F}]

is a filter on Y .

Proof. By Proposition 1.2.8, we need only check for each F1, ..., Fn ∈ F that

n⋂
i=1

f(Fi) 6= ∅.

Indeed, this follows as

n⋂
i=1

f(Fi) ⊇ f

( n⋂
i=1

Fn

)
.

and
⋂n
i=1 Fn 6= ∅ since F is a filter. QED

Corollary 1.5.3. If F is a filter on X and f : X → Y is a function, then G ∈ f(F) if and
only if there is F ∈ F with G ⊇ f(F ).

Proposition 1.5.4. Let X be a set. If α is a net in X and F a filter on X , then

1. f(E(α)) = E(f(α));

2. f(η(F)) ∼ η(f(F)).
1See the discussion in chapter 14 of [Sch97] as well as [PS77]
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Proof. (1) Suppose G ∈ f(E(α)). There is then F ∈ E(α) with G ⊇ f(F ). Since
α ∈ev F , we have f(α) ∈ev G and so G ∈ E(f(α)). Likewise, if G ∈ E(f(α)), then
f(α) ∈ev G. Then α ∈ev f

−1(G). It follows that f−1(G) ∈ E(α) so G ⊇ f(f−1(G)) ∈
f(E(α)) and G ∈ f(E(α)). Thus, f(E(α)) = E(f(α)) as desired.

(2) Observe that

η(f(F)) = η(f(E(η(F)))) (by Theorem 1.2.14)
= η(E(f(η(F)))) (by (1))
∼ f(η(F)) (by Theorem 1.2.14)

as desired. QED

Corollary 1.5.5. Suppose α and β are nets in a set X and f : X → Y . If α ∼ β then
f(α) ∼ f(β).

Proof. This follows as

E(f(α)) = f(E(α)) = f(E(β)) = E(f(β)).

QED

Corollary 1.5.6. If f : X → Y and g : Y → Z are set mappings and F is a filter on X ,
then g(f(F)) = (g ◦ f)(F).

Proof. We observe that

(g ◦ f)(F) = (g ◦ f)(E(η(F)))

= E((g ◦ f)(η(F)))

= E(g(f(η(F))))

= g(E(f(η(F))))

= g(f(E(η(F))))

= g(f(F))

as desired. QED

Proposition 1.5.7. If U is an ultrafilter on a set X and f : X → Y is a set mapping, then
f(U) is an ultrafilter.

Proof. Suppose A ⊆ Y . Either f−1(A) ∈ U or X r f−1(A) ∈ U . If f−1(A) ∈ U , then
A ⊇ f(f−1(A)) ∈ f(U) so A ∈ f(U). Otherwise, an identical argument shows that
Y r A ∈ f(U). QED

Corollary 1.5.8. If ω is a universal net in a set X and f : X → Y is a set mapping, then
f(ω) is universal.
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Proposition 1.5.9. If f : X → Y is a set mapping, F a filter on X and G a filter on Y
with G ⊇ f(F), then

f−1(G) = [{f−1(G) : G ∈ G}]

is a filter and f(f−1(G)) ⊇ G.

Proof. We first show that f−1(U) is a filter. It suffices to show that if U ∈ U then
f−1(U) 6= ∅. Let U ∈ U . Since X ∈ F , we have f(X) ∈ f(F) so that f(X) ∈ U .
Therefore, U ∩ f(X) 6= ∅ and f−1(U) 6= ∅.

We now show the desired containment. Let G ∈ G and f−1(G) ∈ f−1(G). Since
f(f−1(G)) 3 f(f−1(G)) ⊆ G, we have G ∈ f(f−1(G)) as desired. QED

1.6 Miscellaneous Results on Nets and Filters

This section contains an array of results on filters and nets which will be helpful in
future chapters.

Proposition 1.6.1. If F ,G are filters on a set X , then F ∩ G is a filter on X .

Proof. X ∈ F ,G so X ∈ F ∩ G. Since ∅ /∈ F ,G we may be assured that ∅ /∈ F ∩ G.

Suppose F ∈ F ∩ G and X ⊇ G ⊇ F . Then G ∈ F and G ∈ G, so G ∈ F ∩ G.

Suppose G,F ∈ F ∩ G. Then F ∩ G ∈ F ,G, so F ∩ G ∈ F ∩ G. By definition,
F ∩ G is a filter on X . QED

Corollary 1.6.2. Arbitrary intersections of filters are filters.

Proposition 1.6.3. If X is a topological space with x ∈ X with filters F ,G → x, then
F ∩ G → x.

Proof. Since F ,G → x, we have that F ,G ⊇ Nx. Then of course F ∩ G ⊇ Nx. Thus,
F ∩ G → x. QED

Proposition 1.6.4. Suppose F ,G are filters on a set X . If an ultrafilter U ⊇ F ∩ G then
U ⊇ F or U ⊇ G.

Proof. Let U ⊇ F ∩ G be an ultrafilter. Suppose U 6⊇ F ,G. We then find F ∈ F r U
andG ∈ GrU . It follows that F∪G ∈ F∩G and F∪G ∈ U . Further,XrF,XrG ∈ U
since U is an ultrafilter. But then (X r F ) ∩ (X rG) ∈ U and

X r
(
(X r F ) ∩ (X rG)

)
= F ∪G /∈ U .

This is a contradiction. Thus, U ⊇ F or U ⊇ G as desired. QED
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Definition 1.6.5. If {αs : s ∈ S} is a collection of nets in a set X , define∧
s∈S

αs = η(
⋂
s∈S

E(αs))

Call this net the intertwining of the αs. If {αs : s ∈ S} = {α1, α2, ..., αn} write
α1 ∧ α2 ∧ · · · ∧ αn for

∧
s∈S αs.

The following results on the intertwining of nets are formulated for two nets, but
extend to arbitrarily many nets.

Lemma 1.6.6. If α, β are nets in a set X , then E(α ∧ β) = E(α) ∩ E(β).

Proof. This follows from the definition of intertwining and Theorem 1.2.14. QED

This intertwining of nets satisfies the following universal property.

Proposition 1.6.7. If α and β are nets in a set X , then α and β are subnets of α ∧ β and
for any net ζ having α and β as subnets, α ∧ β is a subnet of ζ .

Proof. Since

E(α), E(β) ⊇ E(α) ∩ E(β) = E(α ∧ β)

we have that α and β are subnets of α ∧ β. If ζ is a net in X which contains α and
β as subnets, then we have E(α), E(β) ⊇ E(ζ) so that E(α) ∩ E(β) ⊇ E(ζ) and α ∧ β
is a subnet of ζ . QED

Example 1.6.8. If α, β : N→ X are sequences and we define γ : N→ X by

γ(n) =

{
α(k) n = 2k

β(k) n = 2k + 1

then γ ∼ α ∧ β.

Proposition 1.6.9. If F ,G are filters on a set X and f : X → Y is a mapping of sets, then
f(F ∩ G) = f(F) ∩ f(G).

Proof. Suppose H ∈ f(F ∩ G). There is then H ′ ∈ F ∩ G so that H ⊇ f(H ′). Since
H ′ ∈ F , we have f(H ′) ∈ f(F). Likewise, f(H ′) ∈ f(G). Therefore, f(H ′) ∈
f(F) ∩ f(G) and H ∈ F ∩ G. We then have f(F ∩ G) ⊆ f(F) ∩ f(G).

On the other hand, suppose H ∈ f(F) ∩ f(G). We may find F ∈ F and G ∈ G
so that H ⊇ f(F ), f(G). We the have that F ∪ G ∈ F ∩ G and H ⊇ f(F ∪ H).
Therefore, H ∈ F ∩ G and f(F ∩ G) ⊇ f(F) ∩ f(G) so that f(F ∩ G) = f(F) ∩ f(G)
as desired. QED

Corollary 1.6.10. If α and β are nets in a set X and f : X → Y is a mapping of sets, then
f(α ∧ β) ∼ f(α) ∧ f(β).
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Proof. We compute

f(α ∧ β) = f(η(E(α) ∩ E(β)))

∼ η(f(E(α) ∩ E(β)))

= η(f(E(α)) ∩ f(E(β)))

= η(E(f(α)) ∩ E(f(β)))

= f(α) ∧ f(β),

which is the desired result. QED

Proposition 1.6.11. If X and Y are sets and F ,G are filters on X and Y respectively,
then

F × G = [{F ×G : F ∈ F and G ∈ G}]

is a filter on X × Y . This is called the product filter of F and G.

Proof. It is clear that the conditions of Proposition 1.2.8 are satisfied. QED

Corollary 1.6.12. If X and Y are sets and F ,G are filters on X and Y respectively, then
H ∈ F × G if and only if there exist F ∈ F and G ∈ G so that H ⊇ F ×G.

Proof. This follows from the fact that if A1, A2 ⊆ X and B1, B2 ⊆ Y then

(A1 ×B1) ∩ (A2 ×B2) = (A1 ∩ A2)× (B1 ∩B2)

and the remark following Proposition 1.2.8. QED

Proposition 1.6.13. If X and Y are sets with F ,G filters on X and Y respectively and
π : X × Y → X is the usual projection on the first coordinate, then π(F × G) = F .

Proof. If F ∈ F , then F × Y ∈ F × G and F = π(F × Y ) ∈ π(F × G). Likewise, if
H ∈ π(F × G) then there are some F ∈ F and G ∈ G so that H ⊇ π(F × G). Then
H ⊇ F and H ∈ F . We conclude that π(F × G) = F . QED

Proposition 1.6.14. Fix sets X and Y . If H is a filter on X × Y , there exist filters F on
X and G on Y so thatH ⊇ F × G.

Proof. Let π1 : X×Y → X and π2 : X×Y → Y be the usual projections. The filters
F = π1(H) and G = π2(H) have the desired properties. QED

Products of filters interact well with products of functions and diagonals.

Proposition 1.6.15. Fix sets X, Y,W and Z, filters F ∈ Φ(X) and G ∈ Φ(Y ), and
functions f : X → W and g : Y → Z. When f × g : X × Y → W × Z is given by
(f × g)(x, y) = (f(x), g(y)), one has (f × g)(F × G) = f(F)× g(G).
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Proof. Let H ∈ (f × g)(F × G). There is then H ′ ∈ F × G so that H ⊇ (f × g)(H ′).
Since H ′ ∈ F × G, there are F ∈ F and G ∈ G so that H ′ ⊇ F ×G. Thus,

H ⊇ (f × g)(F ×G) = f(F )× g(G) ∈ f(F)× g(G)

and H inf(F)× g(G). We now have (f × g)(F × G) ⊆ f(F)× g(G).

For the other direction, suppose H ∈ f(F) × g(G). There are then H1 ∈ f(F)
and H2 ∈ g(G) so that H ⊇ H1 ×H2. Since H1 ∈ f(F), there is some F ∈ F so that
H1 ⊇ f(F ). Likewise, there is some G ∈ G so that H2 ⊇ g(G). We then have that

H ⊇ f(F )× g(G) = (f × g)(F ×G) ∈ (f × g)(F × G) = f(F)

and H ∈ (f × g)(F × G) = f(F).

We conclude (f × g)(F × G) = f(F)× g(G) as desired. QED

Proposition 1.6.16. If X is a set, define the diagonal map ∆ : X → X ×X to be given
by x 7→ (x, x). If F ∈ Φ(X), then ∆(F) ⊇ F × F .

Proof. By Proposition 1.6.14, we have that

∆(F) ⊇ π1(∆(F))× π2(∆(F))

= (π1 ◦∆)(F)× (π2 ◦∆)(F)

= F × F .

For the other containment, suppose H ∈ F × F . There are then F1, F2 ∈ F so that
H ⊇ F1 × F2. We then see that H ⊇ ∆(F1 ∩ F2) so that H ∈ ∆(F). We conclude
∆(F) = F × F . QED

Definition 1.6.17. Suppose X and Y are sets and α, β are nets in X and Y respec-
tively. Define the product net in X × Y by

(α, β) : dom(α)× dom(β)→ X × Y

by (α, β)(i, k) = (αi, βk) for each i ∈ dom(α) and k ∈ dom(β).

Proposition 1.6.18. Let X and Y be sets with α,F respectively a net and filter on X and
β,G respectively a net and filter on Y .

1. E((α, β)) = E(α)× E(β).

2. η(F × G) ∼ (η(F), η(G)).

Proof. (1) Suppose (α, β) is eventually in some U ⊆ X × Y . We then have some
(a0, b0) ∈ A×B so that the tail

T = {(α(a), β(b)) : (a, b) ≥ (a0, b0)} ⊆ U.
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Let TA = {α(a) : a ≥ a0} and TB = {β(b) : b ≥ b0}. We see that T = TA × Tb.
Certainly, TA ∈ E(α) and TB ∈ E(β). Therefore, since U ∈ E(α)× E(β).

Now, assume that U ∈ E(α) × E(β). We have some F1 ∈ E(α) and F2 ∈ E(β)
so that U ⊇ F1 × F2. But then α, β are eventually in F1 and F2 respectively, so that
(α, β) is eventually in F1 × F2. We conclude that (α, β) is eventually in U . This
concludes (1) by double containment.

(2) Follows directly from (1). Observe

E(η(F × G)) = F × G
= E(η(F))× E(αG)

= E((η(F), η(G))).

This is exactly that η(F × G) ∼ (η(F), η(G)) as desired. QED

Corollary 1.6.19. If X and Y are sets with α, β are nets in X and Y respectively and
π : X × Y → X is the usual projection, then π(α, β) ∼ α.

Proof. We compute that

E(π(α, β)) = π(E((α, β)))

= π(E(α)× E(β))

= E(α)

which is exactly that π(α, β) ∼ α. QED



Chapter 2

Convergence Spaces

With the last chapter’s preliminaries in place, we may now use nets and filters to
generalize topological spaces with convergence spaces. In the first section we will
present the definition and basic properties of such spaces and continuous maps
between them. In the second, we will explore how convergence spaces relate to
topological spaces. In the third, we will introduce methods for constructing con-
vergence spaces. The fourth and fifth sections will extend the topological notions
of separation and compactness to convergence spaces. In the sixth section, we
will discuss several significant classes of convergence spaces. The exposition here
mainly follows that in [Pat14] and - particularly in 2.6 - [BB02].

2.1 Convergence Structures

In this section, we will define a type of space which uses the convergence of filters
as its primitive notion and define from this a notion of convergence of nets. We
will then prove some basic results on this convergence. Further, we will show
that not only does this convergence include the convergence of nets and filters in
topological spaces but also the almost everywhere convergence from Section 1.1.
Following this, we will define continuous functions between convergence spaces
and introduce the category of convergence spaces.

Definition 2.1.1. A convergence structure on a set X is a relation→⊆ Φ(X) × X so
that

1. [x]→ x for each x ∈ X ;

2. if F ,G ∈ Φ(X) and x ∈ X with F → x and G ⊇ F then G → x;

3. if F ,G ∈ Φ(X) and x ∈ X with F → x and G → x then F ∩ G → x.

The symbol→ is read as converges to. A set together with a convergence structure
is called a convergence space.

Example 2.1.2. By Propositions 1.2.18, 1.3.8, and 1.6.3 we have that the convergence
of filters in a topological space as defined in Definition 1.2.16 gives a convergence
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structure. Given a topological space with underlying set X , we will denote X with
this convergence structure by C(X). Convergence spaces which can be obtained in
this way are called topological convergence spaces.

The reasoning behind Definition 1.2.16 may now be inverted to define a conver-
gence of nets in a convergence space which satisfies the net analogues to the prop-
erties set out in Definition 2.1.1.

Definition 2.1.3. If X is a convergence space, x ∈ X , and α a net in X , say that α
converges to x and write α→ x when E(α)→ x.

Observe that if the convergence structure on X is inherited from a topological
space, this is just the usual notion of convergence.

Proposition 2.1.4. Suppose X is a convergence space with x ∈ X .

1. If α is a constant net at x, then α→ x.

2. If α is a net in X converging to x and β is a subnet of α, then β → x.

3. If α and β are nets in X both converging to x, then α ∧ β → x.

Proof. (1) Suppose α is a constant net at x. By Proposition 1.2.17 we have that
E(α) = [x]. Since [x]→ x we have α→ x.

(2) Suppose α is a net in X converging to x and β is a subnet of α. We have by
definition that E(β) ⊇ E(α). Since α → x we have E(α) → x and thus E(β) → x.
Therefore, β → x.

(3) Suppose α and β are nets inX both converging to x. We then have by Lemma 1.6.6
that E(α ∧ β) = E(α) ∩ E(β). Further, since α, β → x we have that E(α), E(β) → x.
From this it follows that E(α) ∩ E(β)→ x so that α ∧ β → x. QED

Remark 2.1.5. It is possible to define convergence structures directly via nets instead
of filters. One way is to single out some specified set of nets as primitive, define a
convergence structure on these satisfying the properties of Proposition 2.1.4, and
then use equivalence of nets to extend this convergence to all nets. There are a
variety of difficulties here, the first of which is how to choose a set of primitive
nets large enough to ”see” any other net via equivalence. The simplest solution is
to choose the set of primitive nets to be the derived nets of filters. Of course, this
hardly avoids using filters.

Another way around this problem is to sidestep the set theoretic concern by view-
ing the collection of nets as a category. Then, a net based convergence structure can
be realized as a functor satisfying various properties. The details of this method
are discussed in Appendix B.2.
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We will now present some basic properties of net convergence.

Proposition 2.1.6. Suppose X is a convergence space. If F is a filter on X converging to
a point x ∈ X , then η(F)→ x.

Proof. This follows from the fact that E(η(F)) = F . QED

Proposition 2.1.7. If X is a convergence space and x ∈ X and α and β are nets in X
with α ∼ β, then α→ x if and only if β → x.

Proof. This follows since E(α) = E(β). QED

Proposition 2.1.8. Let X be a convergence space. Suppose α : I → X is a net. For each
i ∈ I , define

I≥i = {j ∈ I : j ≥ i}.

If there is i ∈ I and x ∈ X and cofinal I1, ..., In ⊆ I so that

1. I≥i ⊆
⋃n
k=1 Ik

2. α|Ik → x for each k = 1, ..., n

then α→ x.

Proof. This follows from the observation that

E(α) =
n⋂
k=1

E(α|Ik).

QED

Corollary 2.1.9. Suppose X is a convergence space and α : I → X is a net. Fix i ∈ I .
For all x ∈ X , we have α → x if and only if α|I≥i → x. This restriction of α is called a
tail.

We have seen that the convergence of nets and filters in topological spaces is given
by a convergence structure. We will now show that almost everywhere conver-
gence is as well.

Lemma 2.1.10. Let X and Y be sets with Y a convergence space and Z = {f : X → Y }.
Suppose that Λ and Γ are nets in Z and that x ∈ X and y ∈ Y . If Λ ∼ Γ and Λ(x) → y
then Γ(x)→ y.

Proof. Define evx : Z → Y by f 7→ f(x). Since Λ ∼ Γ, we have by Corollary 1.5.5
that

Λ(x) = evx(Λ) ∼ evx(Γ) = Γ(x).

Since Λ(x)→ y we then have Γ(x)→ y. QED
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Proposition 2.1.11. Fix a measure space (X,Σ, µ) and set

M(X) = {f : X → R | f is measurable}.

Define the almost everywhere convergence structure on M(X) by saying if F is a
filter onM(X) and f ∈M(X), then F → f iff η(F ) converges to f almost everywhere.
This is a convergence structure.

Proof. First, suppose f ∈M(X). Recall from Proposition 1.2.17 that η([f ]) is equiv-
alent to the constant net at f . By the previous lemma, we have that η([f ]) converges
to f almost everywhere so that [f ]→ f .

Suppose f ∈ M(X) and F ,G are filters on M(X) with G ⊇ F and F → f . We
have that η(G) is a subnet of η(F). We then have for each x ∈ X that evx(η(G)) is a
subnet of evx(η(F)). From this it follows that if evx(η(F)) converges then so does
evx(η(G)) and to the same limit. Therefore η(G) converges to f almost everywhere
and G → f .

Suppose f ∈ M(X) and F ,G are filters onM(X) with F ,G → f . We have some
set A,B ∈ Σ so that µ(X r A) = µ(X r B) = 0 and η(F)(x) → f(x) for all x ∈ A
and η(G)(x)→ f(x) for all x ∈ B. We observe that

µ(X r (A ∩B)) = µ((X r A) ∪ (X rB))

≤ µ(X r A) + µ(X rB)

= 0

and that if x ∈ A ∩B then

η(F ∩ G)(x) = (η(F) ∧ η(G))(x)

= η(F)(x) ∧ η(G)(x)

→ f(x).

Thus, η(F ∩ G) converges to f almost everywhere and F ∩ G → f .

We conclude that this relation is a convergence structure. QED

Corollary 2.1.12. When (X,Σ, µ) is a measure space and M(X) is given the almost
everywhere convergence structure, a net Λ inM(X) converges to f ∈ M(X) if and only
if it converges almost everywhere.

While we have seen that convergence spaces describe a large collection of con-
vergence notions, including both topological convergence and almost everywhere
convergence, there are still useful notions of convergence which are not given by
any convergence structure. The example given here will be Banach limits.

Let K be either R or C. Let C be the collection of converging sequences in K and `∞

denote the collection of bounded sequence in K. Using the Hahn-Banach theorem,
one may construct a linear functional L : `∞ → K so that when x ∈ `∞
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1. The operator norm of L is 1;

2. If x ∈ C then L(x) = lim x;

3. If x(n) ≥ 0 for all n ∈ N then L(x) ≥ 0;

4. L(T (x)) = L(x) where T : `∞ → `∞ is given by T (x)(n) = x(n+ 1).

For details, see Theorem 7.1 of [Con90]. Such a functional is called a Banach limit.
The usual limit operator is extended in such a way as to enable the following com-
putation.
Example 2.1.13. Let x ∈ `∞ be given by x = (1, 0, 1, 0, 1, ...) and L : `∞ → K be a
Banach limit. The sequence x is certainly bounded but not convergent in the usual
sense. Note that T (x) = (0, 1, 0, 1, 0, ...). We thus have that

1 = lim(1, 1, 1, 1, ...)

= L(1, 1, 1, 1, ...)

= L(x+ T (x))

= L(x) + L(T (x))

= L(x) + L(x)

= 2L(x)

so that L(x) = 1/2.
Note that the sequence x above contains a constant subsequence at 0. If Banach lim-
its could be given by a convergence structure, one would have to have L(0) = 1/2
which is clearly not possible.

Now that convergence spaces have been defined, we can formulate a definition
of continuous maps between convergence spaces.

Definition 2.1.14. A function f : X → Y between convergence spaces X and
Y is called continuous at the point x ∈ X when for all filters F → x in X one
has f(F) → f(x). If f is continuous at each point in its domain, it is said to be
continuous. As in topology, a continuous bijection with continuous inverse is called
a homeomorphism.

Unsurprisingly, continuity may be easily characterized by nets.

Proposition 2.1.15. A function f : X → Y between convergence spaces is continuous at
x ∈ X if and only if for each net α→ x one has f(α)→ f(x).

Proof. Suppose f : X → Y is continuous at some x ∈ X . Let α be a net in X with
α → x. We then have that E(α) → x and by continuity that f(E(α)) → f(x). Since
f(E(α)) = E(f(α)), we have that f(α)→ f(x).

Suppose x ∈ X is such that for each net α → x one has f(α) → f(x). Fix a fil-
ter F → x. We then have that η(F) → x and f(η(F)) → f(x). Since f(η(F)) ∼
η(f(F)), we have that η(f(F)) → f(x). Therefore, f(F) → f(x) as desired for
continuity of f at x. QED
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The net characterization of continuity makes it plainly apparent that continuous
maps between convergence spaces generalize sequentially continuous maps in
metric and topological spaces.

We now have a notion of convergence spaces and maps between such spaces which
interact with convergence structures in a reasonable way. We would like to say
they form a category. For this, it only remains to prove the following result:

Proposition 2.1.16. IfX, Y andZ are convergence spaces and f : X → Y and g : Y → Z
are continuous, then

1. The identity function idX : X → X which is given by x 7→ x is continuous;

2. The composition g ◦ f is continuous.

Proof. Statement (1) is trivial. Certainly if a filter F converges in X , then so must
idX(F) = F and to the same point.

Consider now claim (2). Suppose x ∈ X and we have some filter F → x. Re-
call from Corollary 1.5.6 that g ◦ f(F) = g(f(F)). By continuity of f , we have that
f(F) → f(x). By continuity of g, we have g(f(F)) → g(f(x)). Thus, g ◦ f(F) →
g ◦ f(x). Therefore, g ◦ f is continuous. QED

We now may safely define a category of convergence spaces.

Definition 2.1.17. The category CONV is that whose objects are convergence spaces
and whose morphisms are continuous functions. If X and Y are convergence
spaces, we write C(X, Y ) for the set of continuous functions from X to Y .

2.2 Relation to Topological Spaces

In the last section, we saw that every topological space gives rise to a convergence
space via equipping the underlying set of the topological space with the filter con-
vergence induced by the topology. If X is a topological space, we denoted the
convergence space obtained in this manner by C(X). A reasonable question then is
whether it is possible, given convergence space X , to construct a topological space
T(X) which is in some way close to X . The answer here is affirmative.

In this section, we will show that C, though at this point purely symbolic, may
be seen as a functor C : TOP → CONV witnessing that the category of topolog-
ical spaces is a full subcategory of CONV. We will further construct a functor
T : CONV → TOP which is left adjoint to C.

Definition 2.2.1. The functor C : TOP → CONV is defined by

1. IfX is a topological space, C(X) isX with the convergence structure induced
by its topology;
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2. If X and Y are topological spaces and f : X → Y is continuous, then C(f) :
C(X)→ C(Y ) by x 7→ f(x).

The following two propositions will justify that C is in fact a functor and TOP a full
subcategory of CONV.

Proposition 2.2.2. If X and Y are topological spaces and f : X → Y is continuous, then
C(f) : C(X)→ C(Y ) is continuous.

Proof. Let x ∈ X and suppose there is a filter F → x in C(X). We then have that
F ⊇ Nx and thus f(F) ⊇ f(Nx). Suppose N is a neighborhood of f(x). We then
have by continuity of f that f−1(N) is a neighborhood of x. This of course means
f−1(N) ∈ Nx. We have now

N ⊇ f(f−1(N)) ∈ f(Nx)

which tells us N ∈ f(Nx). Therefore, f(Nx) ⊇ Nf(x). By definition, we then have
that f(Nx)→ f(x) and thus that C(f) is continuous. QED

Proposition 2.2.3. Suppose X and Y are topological spaces. If f : C(X) → C(Y ) is a
continuous mapping of convergence spaces, then f : X → Y is also a continuous mapping
of topological spaces.

Proof. Fix x ∈ X . We have that Nx → x, and thus by continuity of f we know
f(Nx) → f(x). This implies f(Nx) ⊇ Nf(x). Thus, for every neighborhood U
of f(x), there is some neighborhood N of x so that f(N) ⊆ U . Therefore, f is
continuous at x for all x ∈ X . QED

So, C is a functor embedding TOP into CONV as a full subcategory. From here on, if
X is a topological space, we will often not distinguish symbolically between X the
topological space and C(X) the convergence space. Likewise, if f is a continuous
mapping of topological spaces, we will often write simply f for C(f). Explicit use
of C will occur when the context demands extra care.

We will now introduce the set-up required to define the functor T : CONV → TOP.

Definition 2.2.4. If X is a convergence space and x ∈ X , we define the vicinity filter
at x as

Vx =
⋂
{F ∈ Φ(X) : F → x}.

Elements of Vx are called vicinities of x. A subset of a convergence space is called
open when it is a vicinity of each of its points and closed when its complement is
open.

Remark 2.2.5. Recall that a filter F converges to a point in a topological space if and
only if F contains all neighborhoods of this point. Thus, for a topological space X ,
the vicinity filter at a point in C(X) is just the neighborhood filter at that point in
X . Thus, the open sets of C(X) are exactly the open sets of X .
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Remark 2.2.6. The term vicinity filter is non-standard. In [BB02] and [Pat14], these
filters are called neighborhood filters. This name serves as a reminder that vicini-
ties and neighborhoods coincide for topological spaces and extends the topologi-
cal fact that a set is open if and only if it is a neighborhood of each of its points.
However, this term can be misleading. Consider Example 2.43 of [Pat14]: Give
X = {0, 1, 2} a convergence structure by

F → 0 iff {0, 1} ∈ F
F → 1 iff {1, 2} ∈ F
F → 2 iff {0, 2} ∈ F

With this structure, one has that

V0 = [{0, 1}]
V1 = [{1, 2}]
V2 = [{0, 2}]

and that the only open sets are ∅ and X . As we will soon prove is always the case,
the open subsets of X form a topology, but the neighborhood filters of points in
this topology are not the vicinity filters giving rise to the topology.

In [Nel16], vicinity filters are called assembled filters. This terminology offers no
confusion with usual topological notions. However, it seems too divorced from
the topological motivation for vicinity filters. Thus, as in [DM16], the term vicinity
is chosen to retain the flavor of neighborhoods but not invite confusion.
We can reformulate the above definition of open sets as a property which is easier
to verify in practice.

Proposition 2.2.7. A subset V of a convergence space X is a vicinity of x ∈ X if and only
if either of the equivalent conditions are met:

1. for every filter F → x we have V ∈ F ;

2. for every net α→ x we have α ∈ev V .

Proof. Suppose x ∈ X and V is a vicinity of x. Consider a filter F → x. We then
have by the definition of vicinity filter that F ⊇ Vx. But then certainly, we have
that V ∈ F . Likewise, if α is a net converging to x, then E(α) → x. By the above
reasoning, we have V ∈ E(α). This is exactly the statement that α ∈ev V .

Now, suppose V satisfies (1). This says

V ∈
⋂
{F ∈ Φ(X) : F → x} = Vx.

Thus, V is a vicinity of x. Now, suppose V satisfies (2). Consider a filter F → x.
We have that η(F)→ x. Thus, η(F) ∈ev V . Therefore,

V ∈ E(η(F)) = F .

This holds for any filter converging to x, so V is a vicinity of x. QED
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The terminology here is suggestive; it would be ideal if the open subsets of a con-
vergence space formed a topology.

Theorem 2.2.8. If X is a convergence space, the collection of open subsets of X form a
topology.

Proof. Observe that every converging filter inX containsX . SoX is open. Further,
we have that ∅ is open by vacuity.

Suppose U is a family open open subsets of X . Suppose x ∈
⋃
U and F is a filter

converging to x. Then x ∈ U for some U ∈ U . Since U is open we have that U ∈ F .
Since

⋃
U ⊇ U , we have that

⋃
U ∈ F . This holds for all x ∈

⋃
U and filters F → x,

we have that
⋃
U is open.

Now, suppose U1, ..., Un is a family of open subsets of x. Define U = U1 ∩ · · · ∩ Un.
Suppose x ∈ U and F is a filter converging to x. We have that x ∈ U1, ..., Un. Each
is open, so U1, ..., Un ∈ F . Since F is a filter, it is closed under finite intersections.
Therefore, U ∈ F . Therefore, U is a vicinity of each of its points and is open.

The collection of open subsets ofX includeX and ∅ and are closed under arbitrary
unions and finite intersections. This is precisely that they form a topology. QED

If X is a convergence space, we denote the topological space with underlying set
X and open sets given by the convergence structure by T(X). We next show that
the assignment X 7→ T(X) is functorial.

Proposition 2.2.9. If X and Y are convergence spaces and f : X → Y is a continuous
function, the map T(f) : T(X) → T(Y ) given by x 7→ f(x) is continuous as a mapping
of topological spaces.

Proof. Suppose U ⊆ T(Y ) is open. Fix x ∈ f−1(U). Suppose α is a net converging
to x in X . By continuity of f as a mapping of convergence spaces, we have that
f(α) → f(x). Therefore, f(α) ∈ev U . We thus have that α ∈ev f

−1(U). So f−1(U) is
a vicinity of each of its points. It is therefore open as a subset of X . By definition,
it is open in T(X). QED

Corollary 2.2.10. If X and Y are convergence spaces and f : X → Y is continuous, then
for any open U ⊆ Y we have f−1(U) open in X .

We interpret T as a functor T : CONV → TOP. For any convergence space X , by
definition of T and Remark 2.2.5, we have that TC(X) = X . Certainly for any
continuous mapping f of topological spaces, we then have TC(f) = f . Thus, as
functors, TC = idTOP.

In fact, the functors T and C form an adjunction.

Notation 2.2.11. IfX is a convergence space with convergence structure→, denote
the convergence structure in CT(X) by→τ .
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Theorem 2.2.12. If X is a convergence space, the map τX : X → CT given by x 7→ x is
continuous.

Proof. Suppose α is a net in X converging to x ∈ X . Then for any open set U 3 x
in X we have that α ∈ev U . But this is exactly that α is eventually in each open set
containing x in CT(X). This is exactly that α →τ x. Therefore, τX is continuous.

QED

Lemma 2.2.13. The functor T is left adjoint to C.

Proof. We note that for any convergence spaces X and Y and any continuous f :
X → Y , we have that the diagram

X Y

CT(X) CT(Y )

f

τX τY

CT(f)

commutes. Thus, the maps τX are the components of a natural transformation τ :
idCONV → CT. Further, since TC = idTOP, we have a trivial natural transformation
id : TC → idTOP. These natural transformations are such that for any convergence
spaces X and Y , the diagrams

T(X) TCT(X) C(Y ) CTC(X)

T(X) C(Y )

idT(X)

T(τX)

idT(X)

τC(Y )

idC(Y )

C(idY )

commute. Thus, T and C form an adjoint pair with unit and counit of adjunction τ
and id respectively. QED

Corollary 2.2.14. The functor T is cocontinuous and C is continuous.

Corollary 2.2.15. For any convergence space X and any topological space Y and any
continuous function f : X → C(Y ) there is a unique continuous map f̂ : CT(X)→ C(Y )
so that

X C(Y )

CT(X)

τX

f

f̂

commutes.

Proof. Since X and TC(X) have the same underlying set, and τX is continuous, it
suffices to show that f is continuous as a map out of CT(X).

We have that T(f) : T(X) → TC(Y ) = Y is continuous. Then CT(f) : CT(X) →
C(Y ). This is the desired result. QED
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Corollary 2.2.16. A convergence space X is topological if and only if there is a topological
space Y so that X ∼= C(Y ).

Proof. Suppose X is a topological convergence space. Recall that by definition, X
is topological when there is a topological space Y with X = C(Y ). Then certainly
X ∼= C(Y ).

For the other direction, suppose there is a topological space Y and homeomor-
phism f : X → C(Y ). We then have the homeomorphism CT(f) : CT(X) → C(Y )
with CT(f) ◦ τX = f . Since CT(f) and f are homeomorphisms, so is τX . Thus,
X = CT(X) and X is a topological convergence space. QED

Remark 2.2.17. In Corollary 2.2.10, we show that the preimage of open sets under
continuous mappings of convergence spaces are open. This is what one expects
from topology. However, the converse fails. Note X and CT(X) share the same
open sets for any convergence spaceX . Thus, the preimage of any opens set under
τ−1
X is open. However, τ−1

X is not continuous unless X is a topological convergence
space.
Above, we saw how the convergence of filters and nets describe the open subsets
of a convergence space. Convergence can also be used to detect closed sets. We
first need a definition.

Definition 2.2.18. If S is a subset of a convergence spaceX , we define the adherence
of S as

a(S) = {x ∈ X : ∃F ∈ Φ(X)(F → x and S ∈ F)}.

The adherence of course has an equivalent characterization via nets.

Proposition 2.2.19. If S is a subset of a convergence space X , then

a(S) = {x ∈ X : there is a net α in S with α→ x}.

Proof. Suppose x ∈ a(S). There is then a filter F → x with S ∈ F . We thus have
that η(F)→ x and η(F) ∈ev S. We may thus choose a subnet α of η(F) so that α is
entirely in S.

Now, suppose that there is a net α in S with α→ x for some x ∈ X . Then E(α)→ x
and S ∈ E(α). So x ∈ a(S). We conclude

a(S) = {x ∈ X : there is a net α in S with α→ x}.

as desired. QED

Proposition 2.2.20. If f : X → Y is a continuous mapping of convergence spaces, and
S ⊆ X , then f(a(S)) ⊆ a(f(S)).

Proof. Suppose y ∈ f(a(S)). There is then a net α in S and x ∈ X so that α → x
and f(x) = y. Then, f(α) is a net in f(S) and f(α) → y by continuity of f . Thus,
y ∈ a(f(S)). We conclude f(a(S)) ⊆ a(f(S)) as desired. QED
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We may now classify closed sets.

Lemma 2.2.21. For any convergence space X and subset S ⊆ X we have S ⊆ a(S).

Proof. For each x ∈ S we have [x] → x and S ∈ [x]. Therefore, x ∈ a(S) and
S ⊆ a(S). QED

Proposition 2.2.22. If S is a subset of a convergence space X , then the following are
equivalent:

1. S is closed, i.e. X r S is open;

2. a(S) = S.

Proof. Suppose X r S is open. Let x ∈ a(S). There is then a filter F → x with
S ∈ F . But then X r S /∈ F . So X r S is not a vicinity of x. Since X r S is open,
we have x /∈ X r S. Thus, x ∈ S and a(S) ⊆ S and a(S) = S.

Now, suppose a(S) = S and x ∈ X r S and α → x for some filter α. Suppose
there is a cofinite subset I of dom(α) so that α(I) ⊆ S. Then we may define a sub-
net of α entirely contained in S. But then x ∈ a(S) = S which is impossible. Thus,
α ∈ev X r S. Thus, X r S is a vicinity of x for each x ∈ X r S. So, X r S is open
and S closed. QED

Proposition 2.2.23. If X is a convergence space and S ⊆ T ⊆ X , then a(S) ⊆ a(T ).

Proof. This follows immediately since any filter on X containing S contains T .
QED

Corollary 2.2.24. If X is a convergence space and S ⊆ X , then a(S) ⊆ S, the topological
closure of S.

Proposition 2.2.25. If f : X → Y is a continuous mapping of convergence spaces, then
f(Vx) ⊇ Vf(x) for all x ∈ X .

Proof. Fix x ∈ X and V ∈ Vf(x). For any filter F → x in X , we have that f(F) →
f(x) and thus f−1(V ) ∈ F . Thus, f−1(V ) ∈ Vx and V ∈ f(Vx). Thus, f(Vx) ⊇ Vf(x)

as desired. QED

Corollary 2.2.26. The preimage of a vicinity of f(x) under a continuous mapping f is a
vicinity of x.

In summary, we have seen that the category of topological spaces is a full subcat-
egory of the category of convergence spaces. We further have a left adjoint to this
inclusion which produces from any convergence space a topological space which
is ”close” to the convergence space in some sense.
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2.3 New Convergence Structures from Old

In this section, we introduce the initial and final convergence structures. These
allow us to produce new convergence spaces from old ones. The initial structure
allows us to define such objects as subspaces, products, and weak topologies. The
final structure gives quotients, coproducts, and other such objects.

2.3.1 Initial Convergence Structure

Definition 2.3.1. Suppose X is a set and {fi : X → Xi : i ∈ I} is a collection of
functions from X to convergence spaces Xi. The initial convergence structure on X
with respect to {fi : X → Xi : i ∈ I} is given by

F → x ⇐⇒ fi(F)→ fi(x) for all i ∈ I

for filters F ∈ Φ(X) and points x ∈ X .

Remark 2.3.2. It is clear from this definition that if X is a set and {fi : X → Xi : i ∈
I} is a collection of functions from X to convergence spaces Xi, then a net α in X
converges to x ∈ X precisely when fi(α)→ fi(x) for all i ∈ I .

Proposition 2.3.3. If X is a set and {fi : X → Xi : i ∈ I} is a collection of functions
from X to convergence spaces Xi, the initial convergence structure on X with respect to
the fi is actually a convergence structure.

Proof. We need merely check the defining characteristics of a convergence space.
Fix x ∈ X .

For each i ∈ I , we have fi([x]) = [fi(x)]→ fi(x) so that [x]→ x.

Suppose F ,G ∈ Φ(X) both converge to x. Then we have fi(F) → fi(x) and
fi(G)→ fi(x) for each i ∈ I . Thus,

fi(F ∩ G) = fi(F) ∩ fi(G)→ fi(x)

for each i ∈ I so that F ∩ G → x.

Suppose F ,G ∈ Φ(X) with G ⊇ F and F → x. Then

fi(G) ⊇ fi(F)→ fi(x)

so that fi(G)→ fi(x) for each i ∈ I . Thus, G → x.

We thus have that the initial convergence structure is a convergence structure.
QED

Remark 2.3.4. The maps fi giving the initial convergence structure are continuous
when X carries the initial convergence structure.
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The initial convergence structure comes with an important universal property.

Proposition 2.3.5. If X carries the initial convergence structure over a family {fi : X →
Xi : i ∈ I} and Y is any convergence space, a function f : Y → X is continuous if and
only if fi ◦ f is continuous for each i ∈ I .

Proof. Certainly, if f is continuous, then fi ◦ f is continuous for each i ∈ I as a
composition of continuous functions.

Suppose fi ◦ f is continuous for each i ∈ I . Suppose y ∈ Y and α is a net in Y
with α → y. Then by continuity, fi ◦ f(α) → fi(f(y)) for each i ∈ I . But this is
exactly that f(α)→ f(y) in the initial convergence structure. QED

Remark 2.3.6. This universal property completely characterizes the initial conver-
gence structure; that is, the initial convergence structure on X is the only one sat-
isfying this universal property.

Proposition 2.3.7. Every convergence space X carries the initial convergence structure
over C(X,X).

Proof. If a filter F converges in X , then so does f(F) for every f ∈ C(X,X).
Further, if a point x ∈ X and filter F on X is such that f(F) → f(x) for every
f ∈ C(X,X), then in particular F = idX(F) → x. Thus, convergence in X is
exactly convergence in the initial structure over C(X,X). QED

We now define three important instances of the initial convergence structure.

Definition 2.3.8. Suppose X is a convergence space and S ⊆ X . The subspace
convergence structure on S is the initial convergence structure with respect to the
inclusion ι : S ↪−→ X .

Definition 2.3.9. If X, Y are convergence spaces and f : Y → X is a homeomor-
phism onto its image (with the subspace convergence structure), then f is called
an embedding.

Definition 2.3.10. If {Xi : i ∈ I} is a collection of convergence spaces, the initial
convergence structure on X =

∏
i∈I Xi with respect to the projections πi : X → Xi

is called the product convergence structure. Unless otherwise stated, all products of
convergence spaces will be assumed to carry this convergence structure.

Definition 2.3.11. If X is a convergence space, the initial convergence structure on
X with respect to C(X,K) is called the weak convergence structure or weak topology
on X . A space X with this convergence structure is denoted Xσ and convergence
therein is denoted→σ. If S ⊆ X , we denote the closure of S in the weak topology
by S

σ

Remark 2.3.12. We call the weak convergence structure the weak topology precisely
because it is a topological convergence structure whose underlying topology is the
weak topology. This will be established by Proposition 2.6.5 and Definition 2.6.9.
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With these definitions in place, we will prove some basic properties.

Given the name, one hopes that the subspace convergence structure is related to
the usual subspace topology. This is the case.

Proposition 2.3.13. If X is a topological space and S ⊆ X carries the subspace topology,
then C(S) carries the subspace convergence structure with respect to C(X).

Proof. We certainly have that the inclusion : C(S) ↪−→ C(X) is continuous by func-
toriality of C.

Now, suppose Y is some convergence space and f : Y → C(S) is some function so
that i ◦ f is continuous. Let y ∈ Y and U ⊆ S an open set containing f(y). Let α be
a net in Y with α → y. There is then some open set V ⊆ X with U = S ∩ V . Since
i ◦ f is continuous, we have i ◦ f(α) → i ◦ f(y) = f(y). So, f(α) ∈ev V . Since f(α)
is a net in S, we have f(α) ∈ev U . Thus, f(α)→ f(y).

Thus, the convergence structure on C(S) satisfies the universal property of the sub-
space convergence structure and this is the subspace convergence structure. QED

The following is a useful technical detail.

Proposition 2.3.14. Fix a convergence space X and filter F on X converging to some
x ∈ X . If x ∈ S ⊆ X is such that S ∩ F 6= ∅ for all F ∈ F , then F|S → x in S with
the subspace convergence structure. Additionally, if S ∈ F , then F|S → y in S implies
F → y in X .

Proof. Recalling the discussion in Notation 1.3.9, we have that

[F|S] = F ∩ S ⊇ F .

Since F → x, we have [F|S]→ x in X . Thus, F|S → x is S.

For the rest of the proof, it suffices to remark that if S ∈ F , then F ∩ S = F . QED

In topology, it is often possible to define a continuous map on a space X by first
specifying it on subspaces and then gluing this data together to form a function on
the whole space. This can also be done for convergence spaces

Proposition 2.3.15 (General Gluing Lemma). Let Y be a convergence space. If X is a
convergence space satisfying

1. there is a finite collection A of subsets of X with
⋃
A = X ;

2. for each A ∈ A there is a continuous function fA : A→ Y ;

3. for each A,B ∈ A and x ∈ A ∩B we have fA(x) = fB(x);

4. for each A,B ∈ A and every net α in A so that α → x for some x ∈ B we have
fA(α)→ fB(x);
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then there is continuous h : X → Y so that for each A ∈ A we have h|A = fA.

Proof. Letting A = {A1, ..., An}we define f : X → Y by

h(x) =


fA1(x) x ∈ A1

fA2(x) x ∈ A2

...
...

fAn(x) x ∈ An

which is well defined by (1) and (3).

Suppose x ∈ X and there is a net α → x. Let D be the domain of α and for
each k = 1, ..., n define Dk = α−1(Ak). Let

B = {Ak : Dk cofinal in D}.

We have that for each k so that Ak ∈ B that α|Dk → x. Without loss of generality,
let x ∈ A1. For each k so that Ak ∈ B

h(α|Dk) = fAk(α|Dk)→ fA1(x) = h(x)

by continuity of fA1 and (4). Produce d0 ∈ D so that for all d ≥ d0 we have αd ∈⋃
B. It follows that D≥d0 ⊆

⋃
{Dk : Ak ∈ B}. By Proposition 2.1.8 we have that

h(α)→ h(x) so that h is continuous as desired. QED

Corollary 2.3.16 (Open Set Gluing Lemma). SupposeX, Y are convergence spaces, and
U, V ⊆ X are open with U ∪ V = X . If f : U → Y and g : V → Y are continuous
functions agreeing on U ∩ V , then h : X → Y by

h(x) =

{
f(x) x ∈ U
g(x) x ∈ V

is continuous.

Proof. We need only check the hypotheses of the general gluing lemma, of which
only (4) requires any work. Without loss of generality, suppose there is a net α in
U converging to x ∈ V . Since V is open, α ∈ev V . Therefore, α ∈ev U ∩ V . Since f
and g agree on U ∩ V and g is continuous, we have f(α)→ g(x) as desired. QED

Corollary 2.3.17. Suppose U is a finite collection of open subsets of a convergence spaceX
and X =

⋃
U . Suppose Y is any convergence space. If for each U ∈ U there is continuous

fU : U → Y so that for any U, V ∈ U we have fU(x) = fV (x) for all x ∈ U ∩ V , then
there is a continuous function h : X → Y so that for all x ∈ X and U ∈ U we have
h(x) = fU(x) whenever x ∈ U .

We now will turn our attention to the product of convergence spaces. The main
result here is that the product of convergence spaces is the categorical product in
CONV.
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Proposition 2.3.18. If {Xi : i ∈ I} is a family of convergence spaces, then
∏

i∈I Xi is the
categorical product of spaces Xi.

Proof. This is an immediate consequence of Proposition 2.3.5 and the fact that the
Cartesian product is the categorical product in SET. QED

Corollary 2.3.19. If {Xi} is a family of topological spaces,

∏
i∈I

C(Xi) = C

(∏
i∈I

Xi

)
.

Proof. The follows from the continuity of C as established in Corollary 2.2.14 QED

Corollary 2.3.20. The product of topological convergence spaces is again topological.

We end with a useful result saying roughly that to study convergence in a product
space, it is enough to understand the products of filters on the factor spaces.

Proposition 2.3.21. If X and Y are convergence spaces, a filter H on X × Y converges
to (x, y) if and only if there are filters F → x and G → y in X and Y respectively so that
H ⊇ F × G.

Proof. This is an immediate consequence of Proposition 1.6.14. QED

Lastly, we address an apparent ambiguity in the definition of weak convergence
structure, the value of the ground field K.

Proposition 2.3.22. IfX is any convergence space, then the initial convergence structures
on X with respect to C(X,R) and C(X,C) are identical.

Proof. Let Xσ denote X with the initial convergence structure over C(X,C). We
will prove the desired claim by showing that if Y is a convergence space then a
function f0 : Y → Xσ is continuous if and only if f ◦ f0 is continuous for each
f ∈ C(X,R).

Suppose f0 continuous and f ∈ C(X,R) is continuous. Let i : R ↪−→ C be the
usual embedding. We have that i ◦ f ∈ C(X,C). Thus, i ◦ f ◦ f0 is continuous. Let
π1 : C→ R take z ∈ C to its real part. We have π1 ◦ i ◦ f ◦ f0 = f ◦ f0 is continuous.

Now, suppose f ◦ f0 is continuous for each f ∈ C(X,R). Let h ∈ C(X,C). We may
write h = h1 + ih2 for continuous real valued h1, h2. Thus, h◦f0 = h1 ◦f0 + i(h2 ◦f0)
is continuous and by the universal property of initial convergence structures, f0 is
continuous.

Thus, Xσ satisfies the universal property of X with the initial convergence struc-
ture over C(X,R). We conclude the two spaces are the same. QED
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2.3.2 Final Convergence Structure

Definition 2.3.23. Suppose X is a set and {fi : Xi → X | i ∈ I} is some family of
functions out of convergence spacesXi. The final convergence structure onX relative
to the fi is given by

F → x iff F = [x] or there is a finite finite collection of indices J ⊆ I .
So that for each j ∈ J there is a finite subcollection Zj ⊆ Xj so that for
each z ∈ Zj we have both fj(z) = x and a filter Fz → z so that

F ⊇
⋂
j∈J

⋂
z∈Zj

fj(Fz)

for all x ∈ X and filters F on X .

One may check that this is in fact a convergence structure. Further, this conver-
gence structure makes each fi continuous.

Proposition 2.3.24. Suppose X is given the final convergence structure relative to the
family of maps {fi : Xi → X}i∈I out of convergence spaces Xi. If Ω is some convergence
space, then a function f : X → Ω is continuous if and only if f ◦ fi is continuous for all
i ∈ I .

Proof. The case in which f is assumed continuous is trivial.

Assume that f ◦ fi is continuous for all i ∈ I . Let x ∈ X and F → x. If F is
the point filter at x, then f(F) = [f(x)] which must converge. Else, assume that F
is not the point filter. Then there is a finite collection of indices J ⊆ I so that for
each j ∈ J there is a finite subcollection Zj ⊆ Xj such that for each z ∈ Zj we have
both fj(z) = x and a filter Fz → z so that

F ⊇
⋂
j∈J

⋂
z∈Zj

fj(Fz).

We apply f and obtain

f(F) ⊇
⋂
j∈J

⋂
z∈Zj

f ◦ fj(Fz).

By continuity, each filter on the right hand side converges to f(x). Therefore
f(F)→ f(x) and we conclude that f is continuous. QED

There are two final convergence structures which are of particular interest. The
first is the coproduct in CONV

Definition 2.3.25. If {Xi}i∈I is a family of convergence spaces and X =
∐

i∈I Xi

is the disjoint unions of the underlying sets of the Xi, then X along with the final
convergence structure relative to the standard embeddings ei : Xi → X is called
the convergence sum.
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Using the fact that disjoint union is the coproduct in SET and Proposition 2.3.24
one has that the convergence sum is the coproduct in CONV.

Proposition 2.3.26. If {Xi : i ∈ I} is a family of topological spaces, then∐
i∈I

C(Xi) = C

(∐
i∈I

Xi

)
.

Proof. Since the embeddings ei : C(Xi) → C
(∐

i∈I Xi

)
are continuous, we have

that the “identity”
∐

i∈I C(Xi) → C
(∐

i∈I Xi

)
is continuous. Thus, it only remains

to show that if a net α→ x in C
(∐

i∈I Xi

)
, then α→ x in

∐
i∈I C(Xi).

We observe that if a net α → x in C
(∐

i∈I Xi

)
, x ∈ Xi for some i ∈ I and with-

out loss of generality, α is a net in Xi eventually in each neighborhood of x. So
α→ x in C(Xi). By continuity of the embeddings, α→ x in

∐
i∈I C(Xi) and we are

done. QED

The second notable final structure is the quotient.

Definition 2.3.27. If X is a convergence space, Y is a set, and q : X → Y is a sur-
jection, then the final convergence structure on Y relative to q is called the quotient
convergence structure. The map q is then called the quotient map.

The condition for filter convergence given in Definition 2.3.23 becomes somewhat
simpler when working with a quotient convergence structure.

Proposition 2.3.28. Suppose Y is a set, X is a convergence space, and f : X → Y
is a surjection. Place the quotient convergence structure relative to f on X . A filter F
converges to some y ∈ Y if and only if (∗) where (∗) is

there exist x1, ..., xn ∈ X andF1, ...,Fn ∈ Φ(X) so that for each i ∈ {1, ..., n}
one has Fi → xi and f(xi) = y and

F ⊇
n⋂
i=1

f(Fi).

Proof. Checking (∗) against Definition 2.3.23, one sees that it is only necessary to
show that (∗) implies the convergence of point filters. To this end, fix y ∈ Y . Since f
is a surjection, there is some x ∈ X so that f(x) = y. Then [x]→ x and [y] = f([x]).
Thus, (∗) implies [y]→ y as desired. QED

Proposition 2.3.29. Let X be a convergence space, q : X → Y be a surjection, and Y
be given the quotient convergence structure. For any convergence space Ω and continuous
function ϕ : X → Ω so that for all x1, x2 ∈ X we have ϕ(x1) = ϕ(x2) whenever q(x1) =
q(x2), there exists a unique continuous map ϕ∗ : Y → Ω so that

X Ω

Y

ϕ

q
ϕ∗
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commutes.

Proof. For each x ∈ X , we may simply define ϕ∗(q(x)) = ϕ(x). In particular, the
setup assures us this is a well defined map. It is then clear that ϕ∗ must be contin-
uous since its composition with q is continuous. QED

In Corollary 2.3.20 and Proposition 2.3.26 we saw that the product and conver-
gence sum of topological convergence spaces is topological. With Proposition 2.6.5
and Remark 2.6.10, we will establish the even more powerful result that any initial
convergence structure over maps leading into topological convergence spaces is
topological. The following result shows just how catastrophically the analogue of
this result for final convergence structures fails.

Notation 2.3.30. If X is a set and I some index set recall that the disjoint union of
X with itself |I|many times is given by∐

i∈I

X = X × I.

We then define the collapsing map

∇ :
∐
i∈I

X → X

which is given by (x, i) 7→ x for each x ∈ X .

Theorem 2.3.31. Any convergence space is the quotient of a topological convergence
space.

Proof. Let X be a convergence space. Suppose x ∈ X and F → x for some fil-
ter F . Define the topology τF ,x on X by saying U open if and only if U /∈ [x] or
U ∈ F ∩ [x]. Thus, the neighborhood filter of x is just F ∩ [x] and the neighborhood
filter of z 6= x contains {z} and is thus [z].

Now, consider the convergence sum over all such x,F pairs.

Ω =
∐
F→x

C(X, τF ,x).

We will denote elements of Ω as (z, τF ,x) where z, x ∈ X and F → x to distin-
guish the many copies of X from each other. Let eF ,x : (X, τF ,x) → Ω be the usual
embedding. The collapsing map∇ is certainly a surjection. We claim that the con-
vergence structure on X is the quotient convergence structure relative to∇.

Suppose x ∈ X and there is a filter F on X converging to x in the original con-
vergence structure on X . Then, by design, F → x in (X, τF ,x). So then eF ,x(F) →
(x, τF ,x). Then we have by continuity of ∇ that ∇eF ,x(F) = F → x in the quotient
convergence structure on X .
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On the other hand, suppose that F → x in the quotient convergence structure
on X . One may find finitely many z1, ..., zn ∈ X and filters Gi → zi (in the original
convergence structure on X) and filters Fi → (x, τGi,zi) (in Ω) so that

F ⊇ ∇(F1) ∩∇(F2) ∩ · · · ∩ ∇(Fn).

Let i ∈ {1, ..., n}. If x = zi, then Fi ⊇ Gi ∩ [x]. Then ∇(Fi) → x in the original
convergence structure on X . Otherwise, suppose that x 6= zi. Then we have that
Fi = [x] and ∇(Fi) → x in the original convergence structure on X . Thus, F
extends the intersection of filters all converging to x and must then itself converge
to x in the original convergence structure. QED

2.4 Separation Axioms

In this section, we address the extension of topological separation properties to
convergence spaces. We begin by recalling the relevant separation properties. If X
is a topological space, X is

T0 or Kolmogorov iff for any distinct x, y ∈ X , there exists open U

such that x ∈ U and y /∈ U or y ∈ U and x /∈ U ;

T1 or Fréchet iff for all x ∈ X , we have {x} closed;

T2 or Hausdorff iff for any distinct x, y ∈ X , there exists open U 3 x
and V 3 y such that U ∩ V = ∅.

Functionally Hausdorff iff for all distinct x, y ∈ X there is continuous

f : X → R so that f(x) 6= f(y).

Regular iff For an closed set C and point x /∈ C there are open

U 3 x and V ⊇ C so that U ∩ V = ∅.

We will give convergence space analogues to these definitions, give net charac-
terizations of these definitions, establish some useful properties, and prove they
actually extend the topological notions.

Definition 2.4.1. A convergence space X is called T0 or Kolmogorov when for any
x, y ∈ X at least one of the following holds:
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1. there exists a filter F → x with F 6→ y;

2. there exists a filter F → y with F 6→ x;

Proposition 2.4.2. A convergence space X is Kolmogorov if and only if for each x ∈ X at
least one of the following holds:

1. there exists a net α→ x with α 6→ y;

2. there exists a net α→ y with α 6→ x;

Proposition 2.4.3. A topological space X is Kolmogorov if and only if C(X) is Kol-
mogorov.

Proof. Suppose X is a Kolmogorov topological space. Let x, y ∈ X . Without loss
of generality, there is some neighborhood U of x not containing y. We have that
Ny → y, but we cannot have Ny → x as this would require U ∈ N (y). Thus, C(X)
is Kolmogorov.

Conversely, suppose C(X) is a Kolmogorov. Let x, y ∈ X . Without loss of gen-
erality, there is a filter F → x with F 6→ y. Thus, F ⊇ Nx but F 6⊇ Ny. There is
thus a neighborhood U of y such that U /∈ F . Particularly, U /∈ Nx. Thus, U is not
a neighborhood of x. QED

Definition 2.4.4. A convergence spaceX is called T1 or Fréchet when for all x, y ∈ X
we have [x]→ y implies y = x.

Proposition 2.4.5. A convergence space X is Fréchet when for all x, y ∈ X and nets α
with constant value x we have α→ y implies y = x.

Proposition 2.4.6. A convergence space X is Fréchet if and only if for all x ∈ X we have
{x} is closed.

Proof. Suppose X is a Fréchet convergence space and x ∈ X . We have that {x} ⊆
a({x}). Suppose y ∈ a({x}). There is then some filter F → y with {x} ∈ F . Thus,
[x] ⊆ F . But, [x] is an ultrafilter, so F = [x]. Thus, y = x. We have a({x}) = {x}
and {x} is closed.

Now, suppose that for all x ∈ X , we have {x} is closed. Suppose x, y ∈ X with
[x]→ y. We then have that y ∈ a({x}), so y = x. Therefore, X is Fréchet. QED

Corollary 2.4.7. A topological space X is Fréchet if and only if C(X) is Fréchet.

Definition 2.4.8. A convergence space X is called T2 or Hausdorff when if x, y ∈ X
and there is a filter F → x, y, then it must be that x = y.

Proposition 2.4.9. A convergence space X is Hausdorff if and only if for all x, y ∈ W
with a net α→ x, y it must be that x = y.

Proposition 2.4.10. A topological space X is Hausdorff if and only if C(X) is Hausdorff.
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Proof. Suppose C(X) is Hausdorff. Let x, y ∈ X be distinct points such that for
every U ∈ Nx and V ∈ Ny, we have U ∩ V 6= ∅. We may then consider the filter

F = [{U ∩ V : U ∈ Nx ∧ V ∈ Ny}]

which clearly satisfiesF ⊇ N (x),N (y). Thus, F → x, y. We then have x = y. Thus,
X is Hausdorff in the topological sense.

Now, suppose that X is a Hausdorff topological space. Suppose x, y ∈ X and
F → x, y. We then have thatN (x),N (y) ⊆ F . We then have that no two neighbor-
hoods of x and y may have trivial intersection (else ∅ ∈ F). Since X is Hausdorff,
this means x = y. Thus, C(X) is Hausdorff. QED

Definition 2.4.11. A convergence space X is called functionally Hausdorff when for
all distinct x, y ∈ X there is continuous f : X → R so that f(x) 6= f(y).

Proposition 2.4.12. A convergence space X is functionally Hausdorff if and only if the
weak convergence Xσ is Hausdorff.

Proof. Suppose Xσ is Hausdorff. Suppose x, y ∈ X are such that for all continuous
f : X → R we have f(x) = f(y). We then have that f([x])→ f(y) for all continuous
f : X → R. Therefore, [x] →σ y. Since [x] →σ x and Xσ Hausdorff, we have that
x = y.

Now, suppose X is functionally Hausdorff. Suppose x, y ∈ X and there is a fil-
ter F →σ x, y. Then for all f : X → R continuous, we have f(F) → f(x), f(y).
Since R is Hausdorff, f(x) = f(y). So, x = y and Xσ Hausdorff. QED

Proposition 2.4.13. Functionally Hausdorff spaces are Hausdorff.

Proof. This follows from the observation that convergence implies weak conver-
gence. QED

Definition 2.4.14. A convergence space X is is called regular when for every x ∈ X
and filter F → x we have a(F)→ x where

a(F) = [{a(F ) : F ∈ F}].

Proposition 2.4.15. A topological space X is regular if and only if C(X) is regular.

Proof. Suppose X is a regular topological space. Suppose x ∈ X and that there is a
filter F → x. We then have that F ⊇ Nx. Let N ∈ Nx be open. We then have that
X rN is closed. There there are thus open U ∈ Nx and V ⊇ X rN which do not
intersect. We then have that U ⊆ X r V which is closed. Therefore, U ⊆ X r V
and U ⊆ N . Since U ∈ a(F) from U ∈ F , we have N ∈ a(F). Thus, a(F) ⊇ Nx and
a(F)→ x in C(X). Thus, C(X) is regular.

Suppose C(X) is regular. Let C ⊆ X closed and x ∈ X r C. We then have that
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X r C ∈ Nx. Since C(X) is regular, we have a(Nx) ⊇ Nx. Thus, there is open U
with

x ∈ U ⊆ U ⊆ X r C.

We then have that x ∈ U and C ⊆ X r U which have empty intersection. We
conclude that X is regular. QED

Definition 2.4.16. A convergence space X is called functionally regular when for
all x ∈ X and filters F → x we have Fσ → x.

Proposition 2.4.17. Functionally regular spaces are regular.

Proof. This follows from the observation that for any filter F we have a(F) ⊇ Fσ

which in turn follows from the observation that for any subset F of the ambient
space, F

σ ⊇ a(F ). QED

Separation often interacts well with subspaces.

Proposition 2.4.18. If X is a convergence space and S ⊆ X is a subspace, then S is

1. Fréchet if X is;

2. Hausdorff if X is;

3. Functionally Hausdorff if X is;

4. Regular if X is;

5. Functionally regular if X is.

Proof. The proofs of (1) and (2) are straightforward, especially if one considers the
contrapositive.

For (3), one may separate points of the subspace by continuous functions out of
S and then restrict these to S.

For (4), note that if F is a filter on X , then [aS(F)] ⊇ a([F ]) as filters on X . A
similar observation suffices to prove (5). QED

2.5 Compactness

Compactness is an incredibly significant property in the study of topological spaces.
This section discusses the extension of this notion to convergence spaces and ob-
tains a painless proof of Tychonoff’s theorem. It then covers local compactness.

Definition 2.5.1. A convergence space X is compact when every ultrafilter on X
converges. A subset K of X is called compact when it is compact once equipped
with the subspace convergence structure
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Remark 2.5.2. From Theorem 1.4.5,we have that compactness is certainly equivalent
to every universal net in X converging.

This succinct definition can be reformulated to be more similar to the statement
that in metric spaces a space is compact precisely when it is sequentially compact,
that is, each sequence has a convergent subsequence.

Proposition 2.5.3. If X is a convergence space, the following are equivalent.

1. X is compact.

2. For every filter F on X , there is a filter G ⊇ F so that G converges.

3. Every net in X has a converging subnet.

Proof. Suppose X is compact. Let F be a filter on X . By Theorem 1.4.7, we may
find an ultrafilter U ⊇ F . Since X is compact, U converges.

Next, suppose that for every filter F on X , there is a filter G ⊇ F so that G con-
verges. Let α be a net in X . We may find a converging filter G ⊇ E(α). We then
have that η(G) is a converging subnet of α.

Suppose that every net in X has a converging subnet. Thus, since no universal net
onX has s proper subnet, each universal subnet ofX converges, andX is compact.

We have shown (1) implies (2) implies (3) implies (1) and so have established the
desired equivalence. QED

While compactness can be defined as above directly using convergence, it can at
times be useful to have a characterization resembling open cover compactness.

Definition 2.5.4. If X 3 x is a convergence space, a local covering system at x is a
collection C of subsets of X so that whenever F → x in X , we have F ∩ C 6= 0. If
A ⊆ X , a covering system for A in X is a collection C of subsets of X which is a local
covering system at each x ∈ A. We then call a covering system of X in X a covering
system of X

Remark 2.5.5. Covering systems are a clear generalization of open covers. As such,
it is not hard to check that Corollary 2.3.16 and its corollary hold if the open sets
involved are replaced with a covering system.

Theorem 2.5.6. A convergence space X is compact if and only if for each covering system
C of X there exists finite C ′ ⊆ C with X =

⋃
C ′.

Proof. Assume X is a convergence space with covering system C without finite
subset covering X . It is then the case for all C1, ..., Cn ∈ C that

∅ 6= X r (C1 ∪ C2 ∪ · · · ∪ Cn) = (X r C1) ∩ (X r C2) ∩ · · · ∩ (X r Cn).
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We may then find an ultrafilter

U ⊇ {X r C : C ∈ C}

There can be no x ∈ X so that U → x. As otherwise, there would be C ∈ U ∩ C.
Thus, X is not compact.

For the other direction, assume X is a convergence space so that all covering sys-
tems of X have finite subset covering X . Suppose for contradiction there is a non-
converging ultrafilter U on X . We then have that for all converging filters F on X
that U 6⊇ F . Thus, for each such F , there is FF ∈ F with FF /∈ U . We then have
that

C = {FF : F a converging filter on X}

is a covering system with C ∩ U = ∅. We find finite C ′ ⊆ C covering X . But since U
is an ultrafilter, we have that X r C ∈ U for all C ∈ C ′, so

U 3
⋂
C∈C′

(X r C) = X r
⋃
C ′ = ∅.

This contradiction proves that all ultrafilters on X converge and therefore X is
compact. QED

Corollary 2.5.7. A subset K of convergence space X is compact if and only if each cover-
ing system of K in X has finite subset covering K.

Proof. Let X be a convergence space with compact subset K. Let C be a covering
system of K in X . We claim

C∗ = {C ∩K : C ∈ C}

is a covering system of K. Let α → x be a net in K. We have that α → x in X as
well. Thus, there is C ∈ C with α ∈ev C. Since α takes values only in K, we have
that α ∈ev C ∩K. Thus, C∗ has finite subset covering K which clearly gives a finite
subset of C covering K.

Assume now that K ⊆ X has the property that all covering systems of K in
X have finite subset covering K. Let C be a covering system of K and define
C∗ = {C ∪ (X r K) : C ∈ C}. Let x ∈ K and F be a filter on X with F → x in
X . If (X r K) ∈ F , then there is C ∈ C∗ with C ∈ F . Suppose otherwise, that
X rK /∈ F . Then no F ∈ F is contained in X rK and we have K ∩ F 6= ∅. Let

F|K = [{F ∩K : F ∈ F}]K

be a filter on K. We observe that its inflation [F|K ]X to X satisfies [F|K ]X ⊇ F and
so F|K → x in K. There is then C ∈ C with C ∈ F|K . Thus, there is F ∈ F with
C ⊇ F ∩K for which it follows that C ∪ (X rK) ⊇ F and C ∪ (X rK) ∈ F ∩ C∗.
Therefore, C∗ is a covering system ofK inX . It therefore, has finite subset covering
K. This then gives finite subset of C covering K. QED



2.5. Compactness 47

Corollary 2.5.8. If X is a compact topological space, C(X) is compact. If Y is a compact
convergence space T(X) is compact.

Proof. Let C be a covering system for C(X). For each x ∈ X , there is Cx ∈ C so
that Cx ∈ Nx. Thus, there is an open subset Ux of X with x ∈ Ux ⊆ Cx. Since
{Ux : x ∈ X} is an open cover for compact X , it has finite subcover. This witnesses
a finite subset of C covering X . Therefore, C(X) is compact.

Any open cover for T(Y ) is a covering system for Y . Compactness of Y then guar-
antees a finite subcover. QED

Corollary 2.5.9. A topological space X is compact if and only if C(X) is.

We now prove some properties of compact spaces which should be familiar from
topological or more sequence dependent settings.

Proposition 2.5.10. Suppose X is a convergence space and K ⊆ X compact. Fix a filter
F on X . If F ∩K 6= ∅ for all F ∈ F , and particularly if K ∈ F , then F has converging
extension.

Proof. We have that F|K is a filter on K. It thus has ultrafilter extension U which
converges in K. Thus, [U ] ⊇ F converges in X . QED

Proposition 2.5.11. If X is a compact convergence space and E is a collection of closed
subsets of X so that no finite intersection of the element of E is empty, then

⋂
E 6= ∅.

Proof. We have that E generates a filter [E ]. Let U be an ultrafilter extending [E ].
We have some x ∈ X with U → x. Suppose E ∈ E , then E ∈ U . It follows that
x ∈ a(E). But, thus x ∈ E since E is closed. Therefore, x ∈

⋂
E . QED

Proposition 2.5.12. Let X be a convergence space with closed subset A and compact
subset K. The set A ∩K is compact when given its subspace convergence structure.

Proof. Suppose ω is a universal net in A ∩ K. By codomain extension, ω is also
universal in A, K, and X Since K is compact, ω → x for some x ∈ K. Since ω is
also a net in A, we have x ∈ a(A) = A. So, x ∈ K ∩ A. Each universal net in A ∩K
converges, so A ∩K is compact. QED

Corollary 2.5.13. Closed subsets of compact sets are compact.

Proposition 2.5.14. Compact subsets of Hausdorff convergence spaces are closed.

Proof. Suppose X is a Hausdorff convergence space and K ⊆ X is compact. Sup-
pose that x ∈ a(K). We then have a net α → x which is eventually in K. Since K
is compact, this net has a subnet converging in K. But this subnet must converge
to x as α → x. But limits are unique since X is Hausdorff, so x ∈ K. Therefore,
K = a(K) and K is closed. QED
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Lemma 2.5.15. If f : X → Y is a continuous mapping of convergence spaces and C is a
covering system of Y , then

f−1(C) = {f−1(C) : C ∈ C}.

is a covering system for X .

Proof. Suppose F ∈ Φ(X) and x ∈ X with F → x. By continuity of f , we have
that f(F) → f(x). There is then C ∈ C with C ∈ f(F). There is then F ∈ F with
C ⊇ f(F ). Thus, F ⊆ f−1(C) and f−1(C) ∈ F . Therefore, F ∩ f−1(C) 6= ∅ and
f−1(C) is a covering system as desired. QED

Proposition 2.5.16. If X, Y are convergence spaces, X compact, and f : X → Y a
continuous surjection, then Y is compact.

Proof. Suppose C is a covering system for Y . By the preceding lemma, we have
that f−1(C) is a covering system for X . Since X is compact, there are C1, ..., Cn ∈ C
so that f−1(C1), ..., f−1(Cn) covers X . By surjectivity of f , we have that C1, ..., Cn
covers Y . By Theorem 2.5.6, Y is compact. QED

Proposition 2.5.17. If X is a compact convergence space, then for any convergence space
Y the projection π2 : X ×Y → Y is closed; that is, whenever C ⊆ X ×Y is closed, π2(C)
is also closed.

Proof. Fix a compact space X , a convergence space Y , and C ⊆ X × Y closed. Let
α′ : A → π2(C) be a net with α′ → y for some y ∈ Y . We produce a net α : A → C
so that π2(α) = α′. Since X is compact, π1(α) has a subnet β : B → X converging
to some x ∈ X . By Corollary 1.3.7, we may assume that β is a Willard subnet of
π1(α). Thus, there is a monotone final map ι : B → A so that

A X

B

π1(α)

ι
β

commutes. Define γ : B → X × Y by γ = α ◦ ι. Since ι is monotone and final, we
have that γ is a subnet of α. Therefore, π2(γ) → y since π2(γ) is a subnet of π2(α).
Further, π1(γ) = β, so π1(γ)→ x. We conclude that γ → (x, y). Since α : A→ C, we
may be assured that γ is a net in C. Since C is closed, (x, y) ∈ C. Thus, y ∈ π2(C).
So π2(C) contains its adherence and is closed. QED

Theorem 2.5.18. If {Xi : i ∈ I} is a family of compact convergence spaces, X =
∏

i∈I Xi

is compact.

Proof. Suppose ω is a universal net in X . For each i ∈ I , let πi : X → Xi be the
projection onto the i-th coordinate. By Proposition 1.5.7, we have that each πi(ω) is
universal. Since Xi is compact, πi(ω)→ xi for some i ∈ I . By definition of product
convergence structure, we have ω → (xi)i∈I . Each universal net in X converges, so
X is compact. QED
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Corollary 2.5.19 (Tychonoff’s Theorem). If {Xi : i ∈ I} is a family of compact topolog-
ical spaces, X =

∏
i∈I Xi is compact.

Proof. For each i ∈ I , we have by Corollary 2.5.8 that C(Xi) is compact. Thus, the
product of the C(Xi) is compact. Again by Corollary 2.5.8 and Corollary 2.3.19,

X = TC

(∏
i∈I

Xi

)
= T

(∏
i∈I

C(X)i

)
is compact. QED

We now give the convergence space analogue of local compactness.

Definition 2.5.20. A convergence space X is called locally compact when it is Haus-
dorff and every converging filter on X contains a compact set.

Remark 2.5.21. We can state this with nets as X is locally compact when it is Haus-
dorff and every net α converging to x ∈ X is eventually within a compact set
containing x.

Proposition 2.5.22. Any closed subset of a locally compact topological space is locally
compact when endowed with the subspace convergence structure.

Proof. Let A be a closed subset of a locally compact convergence space X . Give
A the subspace convergence structure. Suppose F is a filter on A and F → a for
some a ∈ A. Letting i : A → X be the usual injection, we have that i(F) → a. We
then have that i(F) contains a compact set K ⊆ X . There is then some F ∈ F so
that K ⊇ F . We have that A∩K ⊇ A∩F = F so that A∩K ∈ F . Since A is closed
and K compact, we have that A ∩K is compact by Proposition 2.5.12 QED

2.6 Types of Convergence Spaces

In this section we discuss several classes of convergence spaces: topological, pre-
topological, and Choquet spaces. We have already seen some results pertaining to
topological convergence spaces and a functor which turns any convergence space
into a topological convergence space. Likewise, each other class of convergence
spaces introduced here will have such a functor. Additionally, later sections will
introduce yet more classes of convergence spaces and functors transforming gen-
eral convergence spaces into spaces of the relevant class. Thus, we will first discuss
the properties of these functors in abstract.

2.6.1 Modifications

Definition 2.6.1. A modification of convergence spaces is a pair (M,µ). Here, M is a
functor M : CONV → CONV. A convergence space X is called an M -space when
there is a convergence space Y so that X ∼= M(Y ). Further, µ is a natural transfor-
mation µ : idCONV → M so that the component of µ at a convergence space X is



50 Chapter 2. Convergence Spaces

a homeomorphism if and only if X is an M -space. A modification is called strict
when each of the components of µ is a bijection.

Example 2.6.2. Suppose {Xi : i ∈ I} is a family of convergence spaces. For any
convergence space X , define M(X) to be X with the initial convergence structure
relative to ⋃

i∈I

C(X,Xi).

For each convergence space X define µX : X → M(X) by x 7→ x. It is not difficult
to check that this is a strict modification.

Proposition 2.6.3. If (M,µ) is a modification, a convergence space X is an M -space if
and only if µX is a homeomorphism.

Proof. The result is clear if X ∼= M(X) via µX . So, suppose X is an M -space. We
then have a convergence space Y and homeomorphism f : X → M(Y ). Consider
the naturality square

X M(Y )

M(X) MM(Y )

µX

f

µM(X)

M(f)

Certainly, M(Y ) is an M -space. Thus, µM(Y ) is a homeomorphism. Thus, µX =
M(f)−1µM(Y )f is a homeomorphism. QED

Proposition 2.6.4. Fix a modification (M,µ). IfX is a convergence space, Y anM -space,
and f : X → Y is continuous, there is a continuous map f̂ : M(X)→ Y so that

X Y

M(X)

µX

f

f̂

commutes. If (M,µ) is strict, f̂ is unique.

Proof. Certainly, by naturality of µ, we can obtain a function with the desired prop-
erty by f̂ = µ−1

Y ◦M(f). If (M,µ) is strict, then given any f̂ making the diagram
commute, we may obtain f̂ = f ◦ µ−1

X . We note that µ−1
Y ◦ M(f) = f ◦ µ−1

X by
naturality of µ. Thus, f̂ is unique. QED

Proposition 2.6.5. Suppose (M,µ) is a strict modification. If X is a convergence space
carrying the initial convergence structure with respect to a family {fi : X → Xi | i ∈ I}
where each Xi is a M -space, then X is an M -space.

Proof. For each i ∈ I , consider the commutative diagram
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X Xi

M(X) M(Xi)

fi

µ−1
X

M(fi)

µ−1
Xi

Since eachXi is anM -space, we have that each µ−1
Xi

is continuous. Thus, for each i ∈
I we have fi ◦ µ−1

X is continuous. By the universal property of initial convergence
spaces, we have that µ−1

X is continuous. We conclude that X is an M -space. QED

Definition 2.6.6. If (M,µ) is a modification, we define M-CONV to be the full sub-
category of CONV with objects M -spaces and morphisms continuous mappings.

Proposition 2.6.7. If (M,µ) is a strict modification, M is left adjoint to the inclusion
U : M-CONV → CONV.

Proof. Observe that for any convergence space X and M space Y , the diagrams

X M(X) M(X) MM(X)

M(X) MM(X) M(X)

µX

idM(X)

MµX

µ−1
M(X)

µ−1
X

M(µx)

µ−1
M(X)

commute (the first by naturality and the second by the first) and trivially

Y M(Y )

Y

µY

idY
µ−1
Y

commutes. Thus, the adjunction between M and U is witnessed by unit µ and
counit µ−1. QED

Corollary 2.6.8. Modifications are cocontinuous as functors.

2.6.2 Topological Convergence Spaces

The first major classification of convergence spaces has already been encountered:
topological convergence spaces. The associated modification has also been seen
before.

Definition 2.6.9. The topological modification is the pair (o, τ) where o : CONV →
CONV is given by o = CT and τ is the natural transformation with components τX
introduced in Theorem 2.2.12

Remark 2.6.10. We have from Theorem 2.2.12, Lemma 2.2.13, and Corollary 2.2.16
that (o, τ) is a strict modification of convergence spaces.

The main result of this section is the following classification of topological conver-
gence spaces.
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Theorem 2.6.11. A convergence space X is topological if and only if

1. for every x ∈ X , we have Vx → x;

2. for every S ⊆ X , we have that a(S) is closed.

Proof. Suppose X is a topological convergence space. Thus, by Remark 2.2.5, we
have that Nx = Vx for each x ∈ X ; that is, the neighborhood filter from the un-
derlying topological space and the vicinity filter in X coincide. Since Nx → x, we
have Vx → x. This is (1).

To show that a(S) is closed, we will show a(S) = S. We already have a(S) ⊆ S by
Corollary 2.2.24. Now, suppose x ∈ S. Then each neighborhood of x intersects S
non-trivially. We may thus choose one element from each intersection to construct
a net in S converging to x. Thus, x ∈ a(S) and a(S) = S so that a(S) is closed. This
is (2).

Now, suppose X is a convergence space satisfying (1) and (2). We will prove
o(X) = X . Let x ∈ X and let V be a vicinity of x in X . Every filter F → x
in X contains V . Thus, no filter converging to x contains X r V . Therefore,
x ∈ X r a(X r V ) ⊆ V . Since X r a(X r V ) is open, we have that V is a neigh-
borhood of x. Further, since Vx → x, we have that Vx ⊇ Nx and thus Vx = Nx. We
conclude that a filter in X converges to x if and only if it contains Nx. Therefore,
X = o(X) and X is topological. QED

In Proposition 2.5.11, we proved a property of compact spaces which is well known
to be equivalent to compactness in topological spaces. We now give a proof of this
equivalence in which the role of conditions (1) and (2) in the above are apparent.

Corollary 2.6.12. A topological spaceX is compact if and only if whenever E is a collection
of closed subsets of X so that no finite intersection of the element of E is empty, then⋂
E 6= ∅.

Proof. The case in which X is compact follows from the like result for convergence
spaces given by Proposition 2.5.11.

Suppose whenever E is a collection of closed subsets of X so that no finite inter-
section of the element of E is empty, then

⋂
E 6= ∅. Let U be an ultrafilter on X . Let

E = {a(U) : U ∈ U}. Note that since X is topological and U is a filter, we have that
E consists of closed sets and has the desired finite intersection property. We thus
have that there is some x ∈

⋂
E . Thus, for each U ∈ U , we have some filter FU → x

with U ∈ FU . Since X is topological, FU ⊇ Nx. Thus, for each neighborhood N
of x and U ∈ U , we have N ∩ U 6= ∅. It follows that X r U /∈ U . Thus, N ∈ U
since U is an ultrafilter. Thus, U ⊇ Nx. We conclude that U → x. Therefore, X is
compact. QED

Corollary 2.6.13. If X is a topological convergence space and S ⊆ X , then a(S) = S, the
usual topological closure of S in T(X).
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Corollary 2.6.14. If X is a topological space and S ⊆ X , the following are equivalent

1. S is closed;

2. x ∈ S whenever there is a filter F → x with S ∈ F ;

3. x ∈ S whenever there is a net α→ x so that α ∈ev S.

2.6.3 Pretopological Spaces

In Theorem 2.6.11, we proved that in order for a convergence space to be topolog-
ical, the vicinity filter must converge. Such spaces are called pretopological.

Definition 2.6.15. A convergence space X is pretopological when Vx → x for each
x ∈ X .

Remark 2.6.16. In a pretopological space X , a filter F converges to x if and only if
F ⊇ Vx.

Definition 2.6.17. The pretopological modification is the pair (Π, π). The functor Π :
CONV → CONV sends convergence space X to X equipped with the convergence
structure

F →π x ⇐⇒ F ⊇ Vx

and Π has no effect on morphisms. The natural transformation π : idCONV → Π has
component πX : X → Π(X) given by x 7→ x at convergence space X .

It must of course be proven that the above definition makes sense.

Theorem 2.6.18. The pretopological modification is a strict modification of convergence
spaces.

Proof. We must verify that

(a) As defined, Π is a functor.

(b) as defined, π is a natural transformation.

(c) The pair (Π, π) is a strict modification.

To check the functoriality of Π, we first verify that ifX is a convergence space, then
so is Π(X). If x ∈ X , then we have that [x] → x in X . So, [x] ⊇ Vx and [x] →π x. If
filters F ,G →π x, then F ,G ⊇ Vx and F ∩ G ⊇ Vx so that F ∩ G →π x. If F →π x
and G ⊇ F , then G ⊇ F ⊇ Vx and G →π x. Therefore, Π(X) is a convergence space.

Next, we must check that if f : X → Y is a continuous mapping of convergence
spaces, then Π(f) : Π(X) → Π(Y ) is continuous. To see this, take x ∈ X and filter
F →π x. Then, F ⊇ Vx. By Proposition 2.2.25, we have then that f(F) ⊇ Vf(x) and
f(F)→π f(x) as desired for continuity of Π(f).
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Thus, we have (a), the functoriality of Π. We now consider (b).

Since the necessary naturality diagram is trivial, we need only show that πX : X →
Π(X) is continuous for each convergence space X . But this is apparent: any filter
F converging to x in X contains Vx and so F →π x. This is exactly the continuity
of πX as required for (b).

Lastly, we consider (c). Strictness is clear. Now, suppose X is a convergence
space and πX is a homeomorphism. By continuity of π−1

x , we have that Vx → x
since Vx →π x. This is exactly that X = ΠΠ(X). Further, suppose there is some
convergence space Y with homeomorphism f : X → Π(Y ). Then, we have the
commutative naturality diagram

X Π(Y )

Π(X) ΠΠ(Y )

f

πX πΠ(Y )

Π(f)

It is clear that Π(Y ) = ΠΠ(Y ) and so πΠ(Y ) is a homeomorphism. Thus, πX =
Π(f)−1 ◦ πΠ(Y ) ◦ f is a homeomorphism. Thus, (Π, π) is a strict modification as
desired for (c). QED

Remark 2.6.19. We note from the proof of part (c) that the pretopological spaces
defined in Definition 2.6.15 and Π-spaces of Definition 2.6.1 are the same.

Proposition 2.6.20. If X is a convergence space and S ⊆ X , then a(S) = aπ(S) where
these are the adherences of S in X and Π(X) respectively.

Proof. If x ∈ a(S), then there is a net α in S with α → x. Since πX is continuous,
α→π x and x ∈ aπ(S). Thus, a(S) ⊆ aπ(S).

Suppose on the other hand that x /∈ a(S). Then for every filter F → x in X ,
we have that F ∩ S = ∅ for some F ∈ F . Otherwise, F ∩ S → x witnesses that
x ∈ a(S). Thus, XrS is a vicinity of x. therefore, no filter containing S may extend
Vx. Thus, x /∈ aπ(S).

We conclude that a(S) = aπ(S) as desired. QED

2.6.4 Choquet Spaces

When studying the convergence of sequences in a metric (or even topological)
space, one often makes use of the result2 that a sequence α failing to converge
to a point x is equivalent to there being a subsequence β of α no subsequence of

2Though not presented exactly as such, this result is a key idea of Ordman’s proof in [Ord66]
that almost everywhere convergence is not topological.
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which converges to x.

We will see that the convergence space analogue of this result fails to hold in gen-
eral. First, we will define this analogue and give a few characterizations.

Definition 2.6.21. A convergence spaceX , is called Choquet when a filterF ∈ Φ(X)
converges to x ∈ X whenever every ultrafilter extension of F converges to x.

Remark 2.6.22. Other sources, e.g. [Pat14], refer to these as pseudotopological spaces.

Proposition 2.6.23. If X is a convergence space, the following are equivalent

1. X is Choquet;

2. A net α in X converges to x ∈ X if each of its universal subnets converges to x;

3. A filter F ∈ Φ(X) converges to x ∈ X if for every filter G ⊇ F there is a filter
H ⊇ G so thatH → x;

4. A net α in X converges to x ∈ X if for every subnet β of α there is a subnet γ of β
so that γ → x.

Proof. The equivalence of (1) and (2) and the equivalence of (3) and (4) are appar-
ent.

Suppose X is Choquet. Suppose F ∈ Φ(X) and x ∈ X is such that for every
filter G ⊇ F there is a filter H ⊇ G so that H → x. If U ⊇ F is an ultrafilter, then
each of its filter extensions coincide with U , so U → x. Since X is Choquet, F → x.
This is (3).

Now, suppose (3). Suppose F ∈ Φ(X) and x ∈ X is such that each ultrafilter
U ⊇ F converges to x. Suppose there is a filter G ⊇ F . Extending G to an ultrafilter
U we have that U → x. By (3), we have F → x. Therefore, X is Choquet.

We have now established that (1) and (3) are equivalent. Thus, (1) through (4)
are equivalent. QED

Statement (4) in the above is analogous to the contrapositive of that sequential
statement at the start of this section. We now show that not all convergence spaces
are Choquet.

Example 2.6.24. Consider R2 with the convergence structure F → x when F con-
verges to x in the usual (topological) convergence structure and F extends a finite
intersection of ultrafilters. It is not hard to check that this is a convergence struc-
ture in which the convergence of ultrafilters is exactly the same as in the usual
convergence structure on R2. We claim this is not Choquet.

Let N0 denote the neighborhood filter of 0 in R2. Certainly, each ultrafilter ex-
tension ofN0 converges to 0. We claim thatN0 does not extend a finite intersection
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of ultrafilters and thus cannot converge. By Proposition 1.6.4, it suffices to show
that N0 has infinitely many ultrafilter extensions.

Let N ∈ N and v1, ..., vN be non-parallel unit vectors. Define for each i = 1, ..., N

`i = {tvi : t ∈ (0, 1)}.

and

Fi = N0 ∩ `i.

For each i = 1, ..., N let Ui be an ultrafilter extension of Fi. Note that `i ∈ Ui and
(R2 r `j) ∈ Ui for each i, j = 1, ..., N with j 6= i. Thus, the ultrafilters U1, ...,UN are
distinct. As this procedure can be carried out for any N ∈ N, we have that N0 has
infinitely many ultrafilter extensions. We conclude that R2 with this convergence
structure is not Choquet.
As with topological and pretopological spaces, there is a modification turning any
space into a Choquet space.

Lemma 2.6.25. For each convergence space X , the relation on Φ(X)×X given by F →ch

x exactly when U → x for each ultrafilter U ⊇ F is a Choquet convergence structure on
X .

Proof. The only property of convergence spaces requiring work is that the inter-
section of two filters converging to x ∈ X itself converges to x. This follows from
Proposition 1.6.4.

This convergence structure is clearly Choquet since it agrees with the original con-
vergence structure on ultrafilters. QED

Definition 2.6.26. If X is a convergence space, ch(X) denotes X with the above
convergence structure.

Remark 2.6.27. A convergence space X is Choquet if and only if X = ch(X).

Lemma 2.6.28. If f : X → Y is a continuous mapping of convergence spaces, then
ch(f) : ch(X)→ ch(Y ) defined by x 7→ f(x) is continuous.

Proof. Suppose x ∈ X with filter F →ch x. Suppose U ⊇ f(F) is an ultrafilter.
Recall the preimage filter f−1(U) from Proposition 1.5.9.

Suppose F ∈ F and U ∈ U . Since f(F ) ∈ f(F), we have that f(F ) ∩ U 6= ∅.
Thus, F ∩ f−1(U) 6= ∅. We may thus consider the filter

H = [{F ∩ V : F ∈ F and V ∈ f−1(U)}].

Observe that H ⊇ F , f−1(U). Let V ⊇ H be an ultrafilter. Since V ⊇ F , we have
that V → x. Since V ⊇ f−1(U), we have

f(V) ⊇ ff−1(U) ⊇ U
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and f(V) = U since U is an ultrafilter. We then have that U → f(x) by continuity
of f .

As this holds for all ultrafilters extending f(F), we have that f(F) →ch f(x) and
ch(f) is continuous. QED

Lemma 2.6.29. For each convergence spaceX , the map χX : X → ch(X) given by x 7→ x
is continuous.

Proof. If F is a filter on X and x ∈ X with F → x, then each ultrafilter extension of
F converges to x ∈ X . Thus, F →ch x. QED

Lemma 2.6.30. If X is a convergence space, then X ∼= ch(Y ) for some convergence space
Y if and only if χX is a homeomorphism.

Proof. If χX is a homeomorphism, then X = ch(X).

Suppose X ∼= ch(Y ) for some convergence space Y . We then have the commu-
tative diagram

X ch(Y )

ch(X) chch(Y )

∼=

χX χch(Y )

∼=

Since ch(Y ) is Choquet, we have that χch(Y ) is a homeomorphism, from which it
follows that χX has continuous inverse and is a homeomorphism. QED

The preceding lemmas allow us to prove the following theorem.

Theorem 2.6.31. The pair (ch, χ) is a strict modification and the ch-spaces of this modifi-
cation are exactly the Choquet spaces.

The following is a sometimes useful characterization of convergence in the Cho-
quet modification.

Proposition 2.6.32. If X is a convergence space and x ∈ X , then a filter F →ch x if and
only if for every local covering system C at x in X there are finitely many C1, ..., Cn ∈ C
so that C1 ∪ · · · ∪ Cn ∈ F .

Proof. Suppose F →ch x and C is a local covering system at x in X . Suppose that
no finite union of elements of C is contained in F . We may then take an ultrafilter

U ⊇ {F ∩ (X r C) : C ∈ C, F ∈ F}

We have that U ⊇ F but U ∩ C = ∅. This contradicts F →ch x, and so C contains a
finite subset whose union is contained in F .

Next, suppose that for every local covering system C at x in X there are finitely
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many C1, ..., Cn ∈ C so that C1 ∪ · · · ∪Cn ∈ F . Suppose that U is an ultrafilter on X
which does not converge to x. Then, all ultrafilters which do converge to x differ
from U at at least one element. Choose one such element from each converging
filter and include them into a local covering system at x. From Corollary 1.4.3 we
have U cannot extend F . Therefore, every ultrafilter extension of F converges to x
and F →ch x. QED

We now investigate some of the properties of Choquet spaces, first in relation to
the other types of spaces we have seen.

Proposition 2.6.33. All pretopological spaces are Choquet.

Proof. Suppose X is a pretopological convergence space. Suppose α is a net in X
which does not converge to x ∈ X . It is then the case that α 6∈ev V for some vicinity
V of x. We may then find a subnet β of α never within V . This subnet has no subnet
converging to x. This is the contrapositive of statement (4) in Proposition 2.6.23.
Thus, X is Choquet. QED

Corollary 2.6.34. All topological spaces are Choquet.

Corollary 2.6.35. If X is a convergence space, each of the “identity” maps

X → ch(X)→ Π(X)→ o(X)

are continuous.

Proof. We have that πX : X → Π(X) is continuous. Since Π(X) is Choquet, we
have that the identity ch(X) → Π(X) is exactly ch(πX) which is continuous. The
other identity is subject to the same reasoning. QED

The following result is familiar from the setting of topological spaces.

Proposition 2.6.36. Suppose X is a compact Choquet space and Y is Hausdorff. Every
continuous bijection f : X → Y is a homeomorphism.

Proof. Let α be a net in Y with α → y for some y ∈ Y . Let ω be a universal subnet
of f−1(α). SinceX is compact, there is some x so that ω → x. By continuity of f , we
have that f(ω)→ f(x). Since f(ω) is a subnet of α, we have f(ω)→ y. Given that Y
is Hausdorff, f(x) = y. Therefore, ω → f−1(y) for each universal subnet of f−1(α)
and f−1(α)→ f−1(y) since X is Choquet. We conclude that f−1 is continuous and
f is a homeomorphism. QED

The requirement that X is Choquet cannot be dropped. To see this, restrict the
convergence spaces of Example 2.6.24 to a compact neighborhood K of the origin.
Abusively, letK denote this set with its usual convergence structure andK ′ denote
this set with the described non Choquet convergence structure. We have that K ′ is
compact since the convergence of ultrafilters in K ′ coincides with that in K. The
“identity” K ′ → K is a continuous bijection between compact Hausdorff spaces
which is not a homeomorphism.
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Proposition 2.6.37. Let X and Y be convergence spaces with X Choquet and Y locally
compact. If f : X → Y is a continuous bijection and for each compact L ⊆ Y there exists
compact K ⊆ X so that L ⊆ f(K), then f is a homeomorphism.

Proof. Suppose f(x) = y ∈ Y and that there is some net α → y in Y . We wish to
show that f−1(α)→ x. Since X is Choquet, it suffices to show that every subnet of
f−1(α) itself has a subnet converging to x. Let β be a subnet of f−1(α). Since Y is
locally compact, we have some some compact L ⊆ Y so that α is eventually in L.
It follows that f−1(α) is eventually in f−1(L). By the hypotheses above, we have
some K ⊆ X compact so that f−1(L) ⊆ K. Therefore, f−1(α) ∈ev K. We then have
that β ∈ev K. Now we have that a tail of β is contained in a compact set. Thus,
β has a converging subnet. Call this converging subnet γ and its limit z. By the
continuity of f , we have that f(γ) → f(z). Since γ is a subnet of f−1(α), we see
that f(γ) is a subnet of α and thus converges to f(x). But f(γ) has a unique limit
since Y is Hausdorff. Therefore, f(x) = f(z) and x = z since f is a bijection. We
conclude from the fact that X is Choquet that f−1(α)→ x. From this we have that
f−1 is continuous so that f is a homeomorphism. QED

We end this section with a result giving sufficient conditions for the Choquet and
pretopological modifications of a space to be topological.

Theorem 2.6.38. If X is a compact, regular, Hausdorff convergence space, then

ch(X) = π(X) = o(X).

Proof. To show that ch(X) = Π(X), it is enough to show that the “identity” map-
ping ch(X) → Π(X) is a homeomorphism. This map is a continuous bijection, so
by Proposition 2.6.36 it suffices to show ch(X) compact and Π(X) Hausdorff. If U
is an ultrafilter on ch(X), then U converges in X so it converges in ch(X) so that
ch(X) is compact. We next show that Π(X) is Hausdorff. Suppose there is a filter
F on X with x, y ∈ X with F →π x, y. We extend F to an ultrafilter U →π x, y.
Since X is compact, we have that U → z for some z ∈ X . Since X is regular, we
have that a(U)→ z. We then see that a(U) = aπ(U) and aπ(U)→ z. Suppose U ∈ U .
And consider the filter

V∗ = [{V ∩ U : V ∈ Vx}]

We have that U ∈ V∗ and V∗ ⊇ Vx. Therefore, V∗ →π x and x ∈ aπ(U). It follows
that [x], [y] ⊇ aπ(U) and [x], [y]→ z. Since X is Hausdorff, we have that x = z = y.
It then follows that Π(X) is Hausdorff. At last we have Π(X) = ch(X).

We now prove that Π(X) = o(X). We first show that aπ is idempotent. Let S ⊆ X .
To show that a(S) = aπ(S) is closed, it suffices to show that it is compact since
X is Hausdorff. To show that aπ(S) is compact it suffices to show that a(A) is a
compact subset of X since the continuous image of a compact set is compact. We
will show this is compact by showing that each of its covering systems has finite
subset covering X .
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Let C0 be a covering system for a(A) in X . For each filter F converging in X to
an element of a(S), we have that a(F) converges to the same limit since X is reg-
ular. Therefore, a(F) ∩ C0 6= ∅. There is then some CF ∈ a(F) ∩ C0. There is then
FF ∈ F so that CF ⊇ a(FF). Letting C = {FF : F converges to a point in a(S) }, we
have another covering system for a(S) each element of which is fully contained in
an element of C0.

We now claim that C admits finite subset covering S. Suppose otherwise. We
may then take an ultrafilter

U ⊇ {S r C : C ∈ C}

Since X is compact, we have that U converges. Since S ∈ U , the limit of U is in
a(S). But then U ∩ C 6= ∅. This is impossible, so C has finite subset covering S.

We now may find C1, ..., Cn so that

S ⊆ C1 ∪ C2 ∪ · · · ∪ Cn

from which it follows that

a(S) ⊆ a(C1) ∪ a(C2) ∪ · · · ∪ a(Cn).

We may inflate each of the C1, ..., Cn to elements of C0 which thus has a finite subset
covering a(S).

We now have that Π(X) is pretopological with idempotent closure. Therefore,
Π(X) is topological and thus Π(X) = oΠ(X). We have that id : X → Π(X) is con-
tinuous. By functoriality of the topological modification, we have that id : o(X)→
oΠ(X) = Π(X) is continuous. Since id : Π(X)→ o(X) is continuous, we have that
Π(X) ∼= o(X) via the identity map. Immediately, we have Π(X) = o(X). QED

Corollary 2.6.39. Compact, regular, Hausdorff, Choquet spaces are topological.

2.6.5 Tychonoff Modification

Recall that a topological space X is called Tychonoff when for every point x ∈ X
and closed S ⊆ X r {x} there is a continuous map f : X → [0, 1] so that f(x) = 1
and f(S) = {0}. This section details a modification which turns any convergence
space into a Tychonoff topological convergence space.

Definition 2.6.40. Let K be either R or C with its usual topology. For a convergence
space X , define an equivalence relation ∼ on X by

x ∼ y when f(x) = f(y) for all f ∈ C(X,K)

Define tych(X) := X/ ∼ and q : X → tych(X) to be the quotient map correspond-
ing to ∼. For every f ∈ C(X,K), there is a function f̃ : tych(X)→ K so that
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X

tych(X) K

q f

f̃

commutes. The set tych(X) along with the initial convergence structure over {f̃ :
f ∈ C(X,K)} is called the Tychonoff modification of X .

Remark 2.6.41. Since tych(X) carries the initial convergence structure over K which
is topological, we have by Proposition 2.6.5 that tych(X) is topological.

There is some concern about the well definition of the Tychonoff modification
given that the definition allows the ground field to be either R or C. We will show
that the Tychonoff modification is independent of the choice of ground field.

Proposition 2.6.42. For a convergence space X we denote by tychR(X) the Tychonoff
modification of X over ground field R and denote by tychC(X) the Tychonoff modification
of X over ground field C, then tychR(X) ∼= tychC(X).

Proof. Suppose x, y ∈ X are such that for all f ∈ C(X,R) we have f(x) = f(y).
Let g ∈ C(X,C). We may write g = g1 + g2i for some g1, g2 ∈ C(X,R) since the
projections of C onto R are continuous. Thus, f(x) = g(y).

Suppose instead x, y ∈ X are such that for all f ∈ C(X,C) we have f(x) = f(y).
Let g ∈ C(X,R). We then have that e ◦ g : X → C is continuous where e : R → C
is the usual inclusion. Thus, g(x) = g(y). We conclude that tychR(X) and tychC(X)
have the same underlying set. Suppose that f ∈ C(X,R). We then have that
e◦f : X → C is continuous. Thus, we have ẽ ◦ f : tychC(X)→ C. But the projection
of this to R is just f̃ . Thus, the ”identity” map tychC(X)→ tychR(X) is continuous
by the universal property of the initial convergence structure. A similar argument
shows that its inverse is continuous. We thus have tychR(X) ∼= tychC(X) where in
fact this homeomorphism is an equality. QED

We will next prove that the Tychonoff modification of a convergence space is actu-
ally Tychonoff as a topological space. To do so, we will make use of the Stone-C̆ech
compactification (Appendix C.2), the fact that metric spaces, and in particular R
and C, are normal, and the following lemma.

Lemma 2.6.43. Suppose X is a convergence space and f ∈ C(X,K). For each ε > 0 there
is some g ∈ C(X,K) so that g(x) = f(x) for all x ∈ X with |f(x)| ≤ ε and |g(x)| = ε
otherwise.

Proof. We define λ : X → K by

λ(x) =

{
1 |f(x)| ≤ ε

ε/|f(x)| else
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and claim λ is continuous. We merely check the conditions of Proposition 2.3.15
of which only (4) must be considered in detail. Let A = {x ∈ X : |f(x)| ≤ ε} and
B = X r A.

Since |f | is continuous and Bε(0) closed, no net in A may converge to an element
of B.

Suppose there is a net in B converging to an element x in A. Again by continu-
ity of |f | it must be that |f(x)| = ε so that ε/|f(x)| = 1. We may thus safely use
Proposition 2.3.15.

The function g : X → K given by g(x) = λ(x)f(x) has all of the desired prop-
erties. QED

Theorem 2.6.44. If X is a convergence space, tych(X) is Tychonoff.

Proof. Fix a convergence space X . From the discussion in Remark 2.6.41, we have
that tych(X) is topological. To show tych(X) is Tychonoff, it suffices by Propo-
sition C.2.11 to show that tych(X) is homeomorphic to a subspace of a compact
Hausdorff space. Specifically, we will show that the continuous map η : tych(X)→
β tych(X) which maps tych(X) to its Stone-C̆ech compactification is an embedding.

We first show that η is an injection. Let x, y ∈ X be such that q(x) 6= q(y). There is
then a continuous map f : X → R so that f(x) 6= f(y). Since {f(x)} and {f(y)} are
disjoint closed subsets of K which is normal, there is continuous r : K → [0, 1] so
that r(f(x)) = 1 and r(f(y)) = 0. Since [0, 1] is compact and Hausdorff, there is by

Proposition C.2.7 a unique continuous map ̂̃
r ◦ f : β tych(X)→ K so that

tych(X) [0, 1]

β tych(X)

r̃◦f

η ̂̃
r◦f

commutes. We thus have that ̂̃
r ◦ f(η(q(x))) = 1 and ̂̃

r ◦ f(η(q(y))) = 0 so that
η(q(x)) 6= η(q(y)). We conclude that η is an injection.

It remains to show that η has continuous inverse out of its image. Suppose α is
a net in X and x ∈ X so that η(q(α))→ η(q(x)). To show that η is an embedding, it
now suffices to show that q(α) → q(x) in tych(X). For this, it must be shown that
for any f : X → K continuous, we have f̃(q(α))→ f̃(q(x)).

Let f : X → K be continuous. Let U be an open neighborhood of f̃(q(x)) = f(x).
Let R > 0 be such that f(x) ∈ BR(0) ⊆ K. By Lemma 2.6.43, there is continuous



2.6. Types of Convergence Spaces 63

g : X → K so that {
g(x) = f(x) |f(x)| ≤ R

|g(x)| = R else

Thus, setting K = BR(0), we have g : X → K. Since K is compact and Hausdorff
there is a unique continuous map ̂̃g : β tych(X)→ K so that

tych(X) [0, 1]

β tych(X)

g̃

η ̂̃g

commutes. Since η(q(α)) → η(q(x)), we have that ̂̃g(η(q(α))) → ̂̃g(η(q(x))). By
commutativity of the diagram, ̂̃g(η(q(x))) = g̃(q(x)). By definition of g̃, we have
g̃(q(x)) = g(x). Since x is such that |f(x)| ≤ R, we have that g(x) = f(x). Thus,̂̃g(η(q(α))) → f(x). In particular, ̂̃g(η(q(α))) is eventually in BR(0) ∩ U since this is
an open set containing f(x). Thus, there is i0 ∈ dom(α) so that for all i ≥ i0 we
have ̂̃g(η(q(αi))) ∈ BR(0) ∩ U . But then for all i ≥ i0 we have

̂̃g(η(q(αi))) = f(αi) = f̃(q(αi)).

So, f̃(q(α)) is eventually in U . This holds for all open neighborhoods U of f(x) =

f̃(q(x)), so f̃(q(α))→ f̃(q(x)). This in turn holds for all f ∈ C(X,K), so q(α)→ q(x)
as desired for η to be an embedding.

We now have that tych(X) is homeomorphic to a subspace of a compact Hausdorff
space. Therefore, tych(X) is Tychonoff as desired. QED

Corollary 2.6.45. If X is a functionally Hausdorff convergence space, then the weak con-
vergence Xσ is Tychnoff.

Proof. Since X is functionally Hausdorff, we have that for any distinct x, y ∈ X
there is f : X → R so that f(x) 6= f(y). Thus, q : X → tych(X) is a bijection.
The initial convergence structure on X over C(X,K) is then identical to that on
tych(X). QED

We now aim to establish that the Tychonoff modification gives rise to a modifica-
tion in the sense of Definition 2.6.1. The setup for this will consist of a sequence of
lemmas.

Lemma 2.6.46. A convergence space X is a Tychonoff topological space if and only if
X ∼= tych(Y ) for some convergence space Y .

Proof. If X ∼= tych(Y ) for some convergence space Y , then X is certainly Tychonoff
since tych(Y ) is by Theorem 2.6.44.
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For the other direction, assume X is Tychonoff. We will prove that the quotient
q : X → tych(X) is a homeomorphism. We have that q is continuous by the uni-
versal property of initial convergence structures. Further, since X is Tychonoff,
points may be separated by continuous functions. Therefore, q is a bijection; each
of the equivalence classes in tych(X) is a singleton. To show that q−1 is continuous,
we will prove the contrapositive: if α is a net in X and α 6→ x for some x ∈ X , then
q(α) 6→ q(x).

Fix such a net α and point x. Since X is Tychonoff, it is topological and thus Cho-
quet. We may find a universal subnet ω of α not converging to x. There is then
some neighborhood U of x so that ω 6∈ev U . Since ω is universal, ω ∈ev X r U .
Since U is open, X r U is closed. Since x /∈ X r U , we may find a continuous map
f : X → [0, 1] so that f(X r U) = 0 and f(x) = 1. We then see that f(ω) ∈ev {0}.
Thus, f(ω) 6→ f(x) = 1.

This of course means that f̃(q(ω)) 6→ f(x). Since tych(X) carries the initial con-
vergence structure, we have that q(ω) 6→ q(x). Since q(ω) is a subnet of q(α), we
have q(α) 6→ q(x).

From this, we may safely conclude that q−1 is continuous and q : X → tych(X)
is a homeomorphism. QED

Corollary 2.6.47. A convergence space X is a Tychonoff topological space if and only if
q : X → tych(X) is a homeomorphism.

Corollary 2.6.48. It is the case that K ∼= tych(K).

Lemma 2.6.49. Suppose X and Y are convergence spaces with quotient maps qX : X →
tych(X) and qY : Y → tych(Y ). If f : X → Y is continuous, the map tych(f) :
tych(X) → tych(Y ) given by tych(f)(qX(x)) = qY (f(x)) is well defined, continuous,
and makes

X Y

tych(X) tych(Y )

qX

f

qY

tych(f)

commute.

Proof. Observe that if it is well defined, the definition of tych(f) ensures that the
diagram commutes.

We first check well definition. Suppose x, y ∈ X are such that qX(x) = qX(y).
Suppose g : Y → K is continuous. We then have that g ◦ f : X → K is contin-
uous. Thus, g ◦ f(x) = g ◦ f(y). This holds for all g : X → K continuous, so
qY (f(x)) = qY (f(y)). This shows the well definition of tych(f).
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We then show continuity of tych(f). Let α be a net in X and x ∈ X so that
qX(α) → qX(x). Let g : Y → K. We have that g ◦ f : X → K is continuous.
We thus have that g̃ ◦ f(qX(α))→ g̃ ◦ f(qX(x)). We next observe that

g̃ ◦ f = g̃ ◦ tych(f).

We now have g̃(tych(f)(α))→ f̃(tych(f)(x)). This holds for all continuous g : Y →
K, so tych(f)(α)→ tych(f)(x). We conclude that tych(f) is continuous. QED

Remark 2.6.50. The proceeding lemma, along with the observation

tych(idX) = idtych(X)

tych(f ◦ g) = tych(f) ◦ tych(g)

for convergence space X and any f and g whose composition is sensible, demon-
strates that tych(·) : CONV → CONV is a functor and q : idCONV → tych is a natural
transformation.

From Lemma 2.6.46 and Lemma 2.6.49, we have that the following definition makes
sense.

Definition 2.6.51. The pair (tych, q) is a modification of convergence spaces called
the Tychonoff modification. The tych-spaces associated to this modification are ex-
actly the Tychonoff topological convergence spaces.

Remark 2.6.52. Unlike the topological, pretopological, and Choquet modifications,
the Tychonoff modification is not strict.





Chapter 3

Continuous Convergence

In the last chapter, it was seen that products, coproducts, quotients and other like
objects have a natural convergence structure. In this chapter, we will see that
the space of continuous functions between two convergence spaces also comes
equipped with a canonical convergence structure which, amongst other things,
will show that CONV is a Cartesian closed category. The results of this chapter are
based off those in [BB02] and to a lesser extent [Pat14].

3.1 Remarks on Sets and Topological Spaces

Recall that if A and B are sets, AB denotes the set of functions f : B → A. Note
that for any sets X, Y,A, there is a bijection

T1 : (Y X)A → Y A×X

which we call the primary transpose, given by

T1(h)(a, x) = h(a)(x)

for all h ∈ (Y X)A and a ∈ A and x ∈ X . Its inverse, the secondary transpose, is given
by

T2 : Y A×X → (Y X)A

with

T2(h)(a)(x) = h(a, x)

for all h ∈ Y A×X and a ∈ A and x ∈ X . One can further check that this is natural in
both A and Y . In the language of category theory, this means that SET is Cartesian
closed.

The category TOP of topological spaces and continuous maps, on the other hand,
does not enjoy this property.
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Definition 3.1.1. Say that a topological space X is exponentiable when for all topo-
logical spaces Y , there is a topology on the space of continuous functions C(X, Y )
so that the primary transpose

T1 : C(A,C(X, Y ))→ C(A×X, Y )

is a bijection.

In order for TOP to be Cartesian closed, it must be that all topological spaces are ex-
ponentiable. Unfortunately, this is not the case. Specifically, we have the following
definition and result.

Definition 3.1.2. Suppose X is a topological space and U, V ⊆ X are open. We say
that U < V when every open cover of V has a finite subcover of U . We say that X
is core-compact when for all x ∈ X and for all V 3 x open, there exists U 3 x open
so that U < V .

Theorem 3.1.3. A topological space is exponentiable if and only if it is core-compact.

This is a non-trivial result, and the work required to prove it would take us too
far afield. We refer the reader to the elementary treatment of this result in [EH02].
However, it is immediately useful; one can easily show that Q with its usual topol-
ogy is not core-compact. Thus TOP is not Cartesian closed.

3.2 Continuous Convergence Structure

A major benefit to working with convergence spaces over the usual setting of topo-
logical spaces is that the category CONV is Cartesian closed. The first thing re-
quired to prove this is a convergence structure on the space of continuous functions
between a pair of convergence spaces. This will require one supporting definition.

Definition 3.2.1. IfX and Y are sets andA ⊆ Y X , define the evaluation ev : A×X →
Y by ev(f, x) = f(x). The domain and codomain of evaluation maps should be
clear from context, so we refrain from decorating it with specifying notations.

Definition 3.2.2. If X and Y are convergence spaces, define the continuous conver-
gence structure on C(X, Y ) by

F → f if and only if for all x ∈ X and F ∈ Φ(X) with F → x we have
ev(F ×F)→ f(x)

for F a filter on C(X, Y ) and f ∈ C(X, Y ).

Notation 3.2.3. The following notational convention will be in place. An undec-
orated C(X, Y ) denotes the set of continuous maps f : X → Y . If the context
demands a convergence structure be placed on the function space, then C(X, Y )
is always assumed to carry the continuous convergence structure. If the function
space at any point carries a different convergence, this will be reflected by deco-
ration; for instance Cco(X, Y ) will denote the set C(X, Y ) with the compact-open
topology. Sometimes, it may be helpful to emphasize that C(X, Y ) carries the con-
tinuous convergence structure, and in this case we will use the notation Cc(X, Y ).
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We should verify that the continuous convergence structure is actually a conver-
gence structure.

Proposition 3.2.4. If X and Y are convergence spaces, the continuous convergence struc-
ture is actually a convergence structure.

Proof. Suppose f ∈ C(X, Y ). Fix x ∈ X and filter F → x. One can see that
ev([f ]×F) = f(F). By continuity of f , we have F → x. As this holds for all x ∈ X ,
we have [f ]→ f in the continuous convergence structure.

Suppose F and G are filters on C(X, Y ) so that F ,G → f for some f ∈ C(X, Y ).
Fix x ∈ X and filter F → x. We then see that (F ∩ G ) × F = (F × F) ∩ (G × F).
Thus,

ev[(F ∩ G )×F ] = ev[(F ×F) ∩ (G ×F)]→ f(x).

As this holds for all x ∈ X , we have F ∩ G → f in the continuous convergence
structure.

Suppose F and G are filters in C(X, Y ) so that F → f for some f ∈ C(X, Y )
and G ⊇ F . Fix x ∈ X and filter F → x. We then have G ×F ⊇ F ×F so that

ev(G ×F) ⊇ ev(F ×F)→ f(x).

As this holds for all x ∈ X , we have G → f in the continuous convergence struc-
ture.

We conclude that the continuous convergence structure is a convergence struc-
ture. QED

Evident in the definition of the continuous convergence structure, there is a signifi-
cant connection between the continuous convergence structure and the evaluation
map. This can be formalised as follows.

Proposition 3.2.5. The evaluation ev : Cc(X, Y ) × X → Y is continuous. Further, if
C∗(X, Y ) is the set of continuous functions with some other convergence structure →∗
so that ev : C∗(X, Y ) × X → Y is continuous, then the “identity map” C∗(X, Y ) →
Cc(X, Y ) is continuous.

Proof. Suppose H is a filter in C(X, Y ) × X so that H → (f, x) in Cc(X, Y ) × X .
By continuity of the projections, we have π1(H) → f and π2(H) → x in Cc(X, Y )
and X respectively. By Proposition 1.6.14, we have that H ⊇ π1(H) × π2(H). By
definition of continuous convergence, we have ev(π1(H × π2(H)) → f(x). Thus,
ev(H)→ f(x). This is exactly what is needed for evaluation to be continuous.

Suppose F is a filter on C(X, Y ) so that F →∗ f for some f ∈ C(X, Y ). Let
x ∈ X and F be a filter on X with F → x. We then have that F × F → (f, x)
in C∗(X, Y ) × X . By continuity of evaluation ev(F × F) → f(x) in Y . There-
fore, F → f in Cc(X, Y ). This is exactly what is required for the “identity map”
C∗(X, Y )→ Cc(X, Y ) to be continuous. QED



70 Chapter 3. Continuous Convergence

While the given definition of continuous convergence structure makes use of the
abstract power of filters, it is a bit opaque. When translated into the language
of nets, it becomes more clear. They key is to use Proposition 1.6.18 to translate
between filters and nets in C(X, Y )×X .

Theorem 3.2.6. Suppose X and Y are convergence spaces. The following are equivalent:

1. C(X, Y ) has the continuous convergence structure;

2. A net Λ in C(X, Y ) converges to f ∈ C(X, Y ) if and only if for all x ∈ X and nets
α→ x we have ev(Λ, α)→ f(x).

Proof. We begin by assuming that C(X, Y ) is equipped with the continuous con-
vergence structure. Suppose Λ is a net in C(X, Y ) with Λ → f for some contin-
uous X . Further, suppose α is some net in X converging to x. It is clear that
(Λ, α)→ (f, x) in C(X, Y )×X . By continuity of the evaluation, ev(Λ, α)→ f(x).

Now, assume that Λ is some net in C(X, Y ) so that for some continuous f : X → Y
it is the case that for any x ∈ X and any net α → x we have ev(Λ, α)→ f(x). Sup-
pose x ∈ X and F → x is a filter. We have that η(F) → x, from which it follows
that ev(Λ, η(F)) → f(x). The net (Λ, η(F)) has eventuality filter E(Λ) × F . Thus,
ev(Λ, η(F)) has eventuality filter ev(E(Λ) × F). Therefore, ev(E(Λ) × F) → f(x).
This was true for any x,F so we have E(Λ) → f which is exactly what is needed
for Λ→ f . We have established that (1) implies (2).

Now, assume that a net Λ in C(X, Y ) converges to f ∈ C(X, Y ) if and only if for
all x ∈ X and nets α → x we have ev(Λ, α) → f(x). Suppose F is some filter on
C(X, Y ) converging to continuous function f . Fix x ∈ X and filter F → x. We then
have that η(F )→ f and η(F)→ x. We thus have that ev(η(F ), η(F))→ f(x). But
we know, (η(F ), η(F)) has eventuality filter F × F . It follows that ev(F × F) →
f(x).

Now, assume that there is some filter F on C(X, Y ) and some continuous function
f : X → Y so that for all x ∈ X and filters F → x there holds ev(F × F) → f(x).
Fix any x ∈ X and net α → X . We see that ev(η(F ), α) → f(x). As this is true for
any x, α we know that η(F )→ x. But then F → x. We have now established that
(2) implies (1). QED

This statement of continuous convergence in terms of nets is clearer than the filter
version, but can be made clearer still. Consider the case of sequences. Let (xn)
be a sequence in some convergence space which converges to x. Let (fn) be some
sequence of continuous functions converging to f . We have the following chart:



3.2. Continuous Convergence Structure 71

f1

f2

...

f

x1 x2 · · · x

f1(x1) f1(x2) f1(x)· · ·

f2(x1) f2(x2) f2(x)· · ·

...
...

. . .

f(x1) f(x2) f(x)· · ·

...

The fact that each fi and f is continuous means that we may take limits in the hor-
izontal direction. Continuous convergence tells us exactly that we may also take a
limit along the ”diagonal.” Further, it is not hard to show (via the constant net) that
we can take vertical limits as well, i.e. continuous convergence implies pointwise
convergence.

Some evocative notation can also help to make continuous convergence more clear.

Notation 3.2.7. If F ,Λ are a filter on and net in C(X, Y ) respectively and F , α are
a filter and net in X , define F (F) = ev(F × F) and Λ(α) = ev(Λ, α). Likewise, if
F ⊆ C(X, Y ) and G ⊆ X , we write F (G) for ev(F ×G).

We this notation, we have that F → f if for all x ∈ X and filters F → x we have
F (F)→ f(x). A similar statement may be made for nets.

It is useful to know how convergence works in subspaces of a function space
equipped with the continuous convergence structure.

Proposition 3.2.8. Suppose X and Y are convergence spaces and A(X, Y ) ⊆ C(X, Y ).
A filter F on A(X, Y ) converges to f ∈ A(X, Y ) in the subspace convergence structure if
and only if F (G)→ f(x) for every x ∈ X and filter G → x in X .

Proof. Let ι : A(X, Y )→ C(X, Y ) be the inclusion mapping. We claim that for any
filter G on X that ι(F )(G) = F (G). Observe

H ∈ F (G) ⇐⇒ ∃F ∈ F ∃G ∈ G (H ⊇ F (G))

⇐⇒ ∃F ′ ∈ ι(F ) ∃G ∈ G (H ⊇ F ′(G))

⇐⇒ H ∈ ι(F )(G)

as desired to show set equality.

Since A(X, Y ) carries the subspace convergence structure, F → f if and only if
ι(F ) → f . The desired result then follows by the definition of the continuous
convergence structure. QED

Now that we have the basics of continuous convergence in place, we consider how
these interact with the transpositions of Section 3.1.
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Proposition 3.2.9. If A,X , and Y are convergence spaces and h : A → C(X, Y ) is
continuous, then the primary transpose T1(h) : A×X → Y is continuous.

Proof. This is immediate once one notices T1(h) = ev ◦(h× idX). QED

Proposition 3.2.10. If A, X , and Y are convergence spaces and h : A × X → Y is
continuous, then T2(h) : A→ C(X, Y ) and T2(h) is continuous.

Proof. Suppose h : A × X → Y . We claim that for each a ∈ A, the map T2(h)(a)
is continuous. If β is any net in X converging to x, we have T2(h)(a)(β) ∼ h(α, β)
where α is the constant net at a. Then (α, β) → (a, x) and h(α, β) → h(a, x) by
continuity of h. So, T2(h)(a)(β)→ T2(h)(a)(x) = h(a, x) as desired for continuity of
T2(h)(a).

Now, suppose F is a filter on A with F → a for some a ∈ A. Fix x ∈ X and filter
F → x. We see that F × F → (a, x). By continuity of h we obtain h(F × F) →
h(a, x) = T2(h)(a)(x). We next claim that h(F × F) = ev(T2(h)(F ) × F). which
may be proven by a simple double containment. We have that ev(T2(h)(F )×F)→
T2(h)(a)(x). Moreover, as this holds for any x ∈ X and filter F → x, we may con-
clude that T2(h)(F ) → T2(h)(a). This is exactly what it means for T2(h) to be
continuous. QED

Since T1 and T2 invert each other, we obtain

Corollary 3.2.11. Fix convergence spaces A, X , and Y . A function h : A → C(X, Y ) is
continuous if and only if T1(h) : A×X → Y is continuous. A function g : A×X → Y
is continuous if and only if T2(g) : A→ C(X, Y ) and T2(g) is continuous.

This result is exceedingly useful. Trying to prove a map h : A→ C(X, Y ) is contin-
uous directly from Definition 3.2.2 or Theorem 3.2.6 is a tedious process involving
the consideration of several different filters or nets spread across spaces A, X , and
Y . Testing for continuity with transposition, on the other hand, often allows one
to conclude continuity simply from the commutativity of a diagram or straightfor-
ward computation. This technique is used repeatedly in the proof of the following
theorem.

Theorem 3.2.12. If A, X , and Y are convergence spaces, then

T1 : C(A,C(X, Y ))→ C(A×X, Y )

is a homeomorphism.

Proof. From Corollary 3.2.11, we have that T1 is a bijection with inverse T2. It re-
mains to show that T1 and T2 are continuous.

To show that T1 is continuous, it suffices to show that

T1(T1) : C(A,C(X, Y ))× A×X → Y

is continuous. This follows from commutativity of
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C(A,C(X, Y ))× A×X

C(X, Y )×X Y

ev× idX T1(T1)

ev

To show that T2 is continuous, it is enough to show that

T 2
1 (T2) : C(A×X, Y )× A×X → Y

is continuous. Let f ∈ C(A×X, Y ) and a ∈ A and x ∈ X . We then have that

T 2
1 (T2)(f, a, x) = (T1(T2))(f, a)(x)

= ((T2(f))(a))(x)

= f(a, x)

Thus, T 2
1 (T2) is just an evaluation3 which is certainly continuous. We conclude the

desired homeomorphism. QED

An important consequence of this theorem is that CONV is Cartesian closed.

We now prove some properties related to the continuous convergence structure.

Proposition 3.2.13. If X and Y are convergence spaces and X non-empty, then Y is
homeomorphic to a subspace of C(X, Y ).

Proof. For each y ∈ Y , define y∗ ∈ C(X, Y ) to be the constant map with value y.
Let Y ∗ = {y∗ ∈ C(X, Y ) : y ∈ Y }. We claim that h : Y → Y ∗ given by h(y) = y∗ is a
homeomorphism. It is a bijection, so we must only show that it is continuous with
continuous inverse.

Observe that T1(h) : Y × X → Y is simply the projection onto the Y coordinate.
This is continuous, so h is continuous.

We must now show that h−1 is continuous. Suppose that Λ is a net in Y so that
Λ∗ → y∗ for some y ∈ Y . Let x be a constant net in X . We have that Λ∗(x)→ y∗(x).
This is exactly that Λ→ y. So, h−1 is invertible and we conclude the desired home-
omorphism. QED

Corollary 3.2.14. If X and Y are convergence spaces and X non-empty, then C(X, Y ) is

1. Fréchet if and only if Y is;

2. Hausdorff if and only if Y is;

3. Choquet if and only if Y is.
3Note that this is not precisely true. Both this part of the proof and the preceding part hide

homeomorphisms mediating the ”associativity” of the product of convergence spaces. It is more
proper to say T 2

1 (T2) is the composition of a homeomorphism and evaluation.
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Proof. (1) If C(X, Y ) is Fréchet, then Y is by Proposition 2.4.18 since Y is homeo-
morphic to a subspace of C(X, Y ). Suppose C(X, Y ) is not Fréchet. There is then
a constant net Λ in C(X, Y ) with value f so that Λ → g with g 6= f . We may then
choose x ∈ X , so that Λ(x)→ g(x) with f(x) 6= g(x). But Λ(x) is merely a constant
net with value f(x). Thus, Y is not Fréchet.

(2) follows from analogous reasoning.

(3) If C(X, Y ) is Choquet, then Y is since Y is homeomorphic to a subspace of
C(X, Y ).

Suppose now that Y is Choquet. To show that C(X, Y ) is Choquet, it suffices to
show that it is equal to its Choquet modification. By Proposition 2.6.32, it suffices
to show that for any f ∈ C(X, Y ), if a filter F is such that for all local covering
systems of f there is a finite subcollection whose union is contained in F , then
F → f .

Fix f and F with these properties. Let x ∈ X and F → x for some filter F on
X . Suppose C is a local covering system at f(x) in Y . For each C ∈ C and F ∈ F ,
define

〈C,F 〉 = {g ∈ C(X, Y ) : C ⊇ g(F )}

and then

C = {〈C,F 〉 : C ∈ C, F ∈ F}.

One may check that C is a local covering system at f is C(X, Y ). There are then
finitely many C1, ..., Cn ∈ C and F1, ..., Fn ∈ F so that

〈C1, F1〉 ∪ · · · ∪ 〈Cn, Fn〉 ∈ F .

We then have that

C1 ∪ · · · ∪ Cn ⊇ (〈C1, F1〉 ∪ · · · ∪ 〈Cn, Fn〉)(F1 ∩ · · · ∩ Fn) ∈ F (F).

We conclude from this that any covering system of f(x) in Y contains a finite subset
whose union lies in F (F). Thus, by Proposition 2.6.32 and since Y is Choquet, we
have F (F) → f(x). This is the case for all x ∈ X and filters F → x. So, F → f .
This is the desired result, and we conclude that C(X, Y ) is Choquet. QED

A similar result holds for functional Hausdorffness and regularity, but requires a
lemma.

Lemma 3.2.15. Fix convergence spaces X and Y . If Λ is a net in C(X, Y ) and Λ →σ f ,
then Λ(x)→σ f(x) for all x ∈ X .
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Proof. We must show that for any g ∈ C(Y ) that g ◦ Λ(x) → g(f(x)). Define H :
C(X, Y )→ K by H(h) = g ◦ h(x) for all continuous h : X → Y . We claim that H is
continuous. This follows from commutativity of

C(X, Y ) K

{g} × C(X, Y )× {x} C(X)× {x}

id

H

◦×id

ev

Thus, H ∈ CcCc(X, Y ). We then have that H(Λ) → H(f) = g(f(x)) and that
H(Λ) = g ◦ Λ(x). This is the desired convergence. We thus have that Λ(x) →σ

f(x). QED

Proposition 3.2.16. If X and Y are convergence spaces, then Cc(X, Y ) is functionally
regular or functionally Hausdorff if and only if Y is.

Proof. One direction is trivial since by Proposition 3.2.13 we may embed Y into
Cc(X, Y ).

Assume Y is functionally regular. Suppose we have a filter F → f in Cc(X, Y ).
We wish to show that F

σ → f . Let G → x in X . We have that F (G)→ f(x). Since
Y is functionally regular, we have F (G)

σ
→ f(x). We claim that F (G)

σ
⊆ F

σ
(G),

so that F
σ
(G) → f(x). To verify this claim, let U ∈ F (G)

σ
. There is then F ∈ F

and G ∈ G so that U ⊇ F (G)
σ
. Let y ∈ F

σ
(G). There is then x ∈ G and f ∈ F

σ

so that f(x) = y. We then have a net Λ in F so that Λ →σ f . We then have that
Λ(x) →σ f(x) by Lemma 3.2.15. Thus, f(x) = y ∈ F (G)

σ
. Then one has that

F
σ
(G) ⊆ F (G)

σ
from which the claim follows. It then follows that F

σ → f so that
Cc(X, Y ) is functionally regular.

Now suppose that Y is functionally Hausdorff. Suppose that we have a net Λ →σ

f, g in C(X, Y ). For each x ∈ X , we have that Λ(x) →σ f(x), g(x). Since Y is
functionally Hausdorff, we have that f(x) = g(x) so that f = g and Cc(X, Y ) is
functionally Hausdorff. QED

Corollary 3.2.14 and Proposition 3.2.16 give us an important class of functionally
regular and functionally Hausdorff Choquet spaces.

Definition 3.2.17. Recall that K stands for either R or C. We denote by C(X) the
convergence space C(X,K). This convergence space, called the paradual of X , is
Hausdorff and Choquet since K is. Let Cb(X) denote the subset of C(X) consist-
ing of bounded functions. Unless otherwise indicated, this carries the subspace
convergence structure from Cc(X).

As we will show, the bounded functions are dense in the paradual.

Proposition 3.2.18. If X is a convergence space, then the set Cb(X) of bounded continu-
ous function f : X → K is dense in C(X).
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Proof. Let f ∈ C(X). Consider R+ as a directed set under its usual order. Consider
the net Λ : R+ → C(X) so that for each r ∈ R+ and x ∈ X we have Λr(x) = f(x)
for all x ∈ X with |f(x)| ≤ r and |Λr(x)| = r otherwise. Such continuous functions
exist by Lemma 2.6.43. We claim that Λ→ f .

Suppose x ∈ X with a net α → x ∈ X with domain D. Let ε > 0 By continu-
ity of f , we have f(α) → x. Without loss of generality, let R bound |f(α)| above
(if |f(α)| is unbounded, we restrict ourselves to a bounded tail and invoke Corol-
lary 2.1.9). Let d0 ∈ D so that for all d ≥ d0 we have |f(αd) − f(x)| < ε. Observe
that if r ≥ R then for all d ∈ D we have Λr(αd) = f(αd). So, when (r, d) ≥ (R, d0)
we have |Λr(αd)− f(x)| < ε. Therefore, Λ(α)→ f(x) as desired for Λ→ f . QED

Continuous maps between convergence spaces induce continuous maps between
function spaces.

Definition 3.2.19. Fix a convergence space Z. For any convergence spaces X, Y
and continuous f : X → Y , define f ∗ : C(Y, Z)→ C(X,Z) by f ∗(h) = h ◦ f . Define
f∗ : C(Z,X)→ C(Z, Y ) by f∗(h) = f ◦ h.

The continuity of these maps is a consequence of the following lemma.

Lemma 3.2.20. If X, Y, Z are convergence spaces, the composition map

◦ : C(Y, Z)× C(X, Y )→ C(X,Z)

is continuous.

Proof. We check that

C(Y, Z)× C(X, Y )×X

C(Y, Z)× Y Z

T1(◦)id× ev

ev

commutes so that ◦ is continuous by Corollary 3.2.11. QED

Corollary 3.2.21. If f : X → Y is a continuous mapping of convergence space, then
for any convergence space Z, the maps f ∗ : C(Y, Z) → C(X, Y ) and f∗ : C(Z,X) →
C(Z, Y ) are continuous.

Remark 3.2.22. It is the straightforward to check that for all convergence spaces
X, Y,W and f : X → Y and g : Y → W continuous that

1. id∗X = idC(X,Z);

2. idX∗ = idC(Z,X);

3. (g ◦ f)∗ = f ∗ ◦ g∗;

4. (g ◦ f)∗ = g∗ ◦ f∗.
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From this, we have that the assignments

X 7→ Cc(X,Z)

and

f 7→ f ∗

for convergence spaces X and continuous f is a contravariant functor CONV →
CONV. Likewise, the assignment

X 7→ Cc(Z,X)

and

f 7→ f∗

for convergence spaces X and continuous f is a covariant functor CONV → CONV.

Moreover, the action of these functors on morphisms is continuous.

Proposition 3.2.23. Fix a convergence space Z. For any convergence spaces X and Y ,
the maps

(·)∗ : Cc(X, Y )→ Cc(Cc(Y, Z), Cc(X,Z))

and

(·)∗ : Cc(X, Y )→ Cc(Cc(Z,X), Cc(Z, Y ))

are continuous.

Proof. Continuity follows from the fact that the primary transpose of each map is
merely composition which is continuous. QED

3.3 The Compact-Open Topology

Under certain circumstances, the continuous convergence structure is actually a
topological convergence structure. This section considers such a case.

Definition 3.3.1. If X and Y are sets and K ⊆ X and U ⊆ Y , define

T (K,U) = {f ∈ Y X : f(K) ⊆ U}.

If X and Y are convergence spaces, then we define the compact-open topology on
C(X, Y ) to be that generated by subbasis

Bco = {T (K,U) : K ⊆ X compact and U ⊆ Y open}.

We denote C(X, Y ) with this convergence structure by Cco(X, Y ).



78 Chapter 3. Continuous Convergence

The topology induced by the continuous convergence structure is finer than the
compact open topology.

Proposition 3.3.2. For any convergence spacesX and Y , the “identity” map TCc(X, Y )→
Cco(X, Y ) is continuous.

Proof. It suffices to show that each subbasic open set ofCco(X, Y ) is open in TC(X, Y ).
Fix K ⊆ X compact and U ⊆ Y open. Suppose F is a filter on C(X, Y ) so that
T (K,U) /∈ F . Then for each F ∈ F we have F 6⊆ T (K,U). Thus, we may define
the non-empty set

HF = {x ∈ K : ∃f ∈ F (f(x) /∈ U)}.

Observe that if F1, F2 ∈ F , then HF1∩F2 ⊆ HF1 ∩HF2 . We may thus safely define a
filterH ∈ Φ(X) by

H = [{HF : F ∈ F}].

We observe that K ∈ H, so by compactness of K and Proposition 2.5.10 we have
that there is some ultrafilter V ⊇ H so that V → x for some x ∈ K. We claim that
U /∈ F (V). Otherwise, there is F ∈ F and V ∈ V so that F (V ) ⊆ U . But then
V ∩HF = ∅, a contradiction.

Thus, for each f0 ∈ T (K,U) we have that F (V) 6→ f0(x) since U is an open set
containing f0(x). Therefore, F 6→ f0. By contraposition, we have that T (K,U) is a
vicinity of each of its elements, meaning that it is open.

We now have that the subbasic open sets of Cco(X, Y ) are open in TC(X, Y ). We
conclude that the “identity” map TC(X, Y )→ Cco(X, Y ) is continuous. QED

Corollary 3.3.3. For any convergence spaces X and Y , the “identity” map Cc(X, Y ) →
CCco(X, Y ) is continuous.

Proposition 3.3.4. IfX is locally compact and Y is regular and topological, thenCc(X, Y ) =
CCco(X, Y ).

Proof. It suffices to show that convergence in Cco(X, Y ) implies convergence in
Cc(X, Y ). Suppose f ∈ C(X, Y ) with filter F →co f . Fix x ∈ X , an open neighbor-
hood U of f(x), and a filter G → x. By continuity of f , we have that f(G) → f(x)

and f(G) → f(x) by regularity and topologicity of Y . Thus, U ∈ f(G) and there is
G ∈ G so that U ⊇ f(G). Further, by continuity of f , we have that U ⊇ f(G). Note
thatG ∈ G. SinceX is locally compact, there is compactK ′ ⊆ X so that x ∈ K ′ ∈ G.
We then have that K := G ∩ K ′ ∈ G. We have that f(K) ⊆ U , so f ∈ T (K,U)
which is open in Cco(X, Y ). Since F →co f , we have that T (K,U) ∈ F . Thus,
U ⊇ T (K,U)(K) ∈ F (G). This holds for all open U 3 f(x), so F (G) → f(x).
Indeed, this is true for any x ∈ X and filter G → x. Therefore, F → f in the
continuous convergence structure. This is the desired result. QED
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Corollary 3.3.5. WheneverX is a locally compact convergence space, its paradual is topo-
logical with the compact-open topology.

Theorem 3.3.6. If X is a compact topological convergence space, then C(X) = Cco(X) is
a Banach space with supremum norm.

Proof. Define || · || : Cc(X) → K by ||f || = sup{|f(x)| : x ∈ X} for all continuous
f : X → K.

We first argue that this is well defined, that is each f ∈ Cc(X) is bounded. Sup-
pose for the sake of contradiction there is an unbounded f ∈ Cc(X). There is then
some net α : N → X so that for all n ∈ N we have |f(αn)| > n. Since X is com-
pact, we have that some subnet β of α so that β → x for some x ∈ X . But since
f(α) ∈ev KrnD for all n ∈ N, we have that f(β) ∈ev KrnD as well. So, f(β) cannot
converge. This contradicts the continuity of f . We conclude that all f ∈ Cc(X) are
bounded.

We next argue that the topology induced by this norm is the compact-open topol-
ogy. Let U ⊆ K be open and K ⊆ X compact. Let f ∈ T (K,U). For every k ∈ K,
we may find rk > 0 so that Brk(f(k)) ⊆ U . The collection {Brk/2(f(k)) : k ∈ K}
is an open cover for f(K) which is compact. We may thus find k1, ...kn so that
{Brki/2

(f(ki)) : i = 1, ..., n} is a finite subcover. Let ε = min{rki : i = 1, ..., n}/2. We
claim that Bε(f) ⊆ T (K,U). Let g ∈ Bε(f) and x ∈ K. There is some ki = k1, ..., kn
so that |f(x)− f(ki)| < rki/2. We then compute that

|g(x)− f(ki)| ≤ |g(x)− f(x)|+ |f(x)− f(ki)| < ε+ rki/2 ≤ rki .

It follows that g(x) ∈ U and g(K) ⊆ U so g ∈ T (K,U) as desired. We therefore have
that T (K,U) is open in the norm induced topology. This shows that the “identity”
map from C(X) with the norm topology to Cco(X) is continuous.

We now claim that the “identity map” from Cco(X) to C(X) with the the norm
topology is continuous. Suppose f ∈ C(X) and there is a net α→ f in the compact-
open topology. We must show that α→ f in norm. Fix ε > 0. For each x ∈ X , find
open Ux ⊆ X so that f(Ux) ⊆ Bε/4(f(x)). Since X is compact, we may find x1, ..., xn
so that {Ux1 , ..., Uxn} covers X . Further, observe that for each x ∈ X ,

f(Ux) ⊆ f(Ux) = Bε/4(f(x)) ⊆ Bε/2(f(x))

and thus f ∈ T (Ux, Bε/2(f(x))). Further, since X is compact and Ux closed, we
have Ux is compact. Since α→ f in the compact-open topology, we have that α ∈ev⋂n
i=1 T (Uxi , Bε/2(f(xi))). Suppose that g ∈

⋂n
i=1 T (Uxi , Bε/2(f(xi))) and x ∈ X . We

have some i = 1, ..., n so that x ∈ Uxi . Thus, we have that g(x), f(x) ⊆ Bε/2(f(xi)).
Therefore, |f(x)−g(x)| < ε. From this calculation, we have that α→ f in norm. We
now have that the “identity map” fromCco(X) toC(X) with the the norm topology
is continuous. Therefore, Cco(X) and C(X) with supremum norm are identical.
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It remains to show that Cco(X) is complete. Suppose α : N → C(X) is Cauchy.
For each x ∈ X , we have that α(x) is Cauchy. By completeness of K, each α(x)
converges to some unique value f(x) ∈ K, defining a function f : X → K. We will
argue that f ∈ C(X) and that α→ f in norm.

We prove first that α → f in norm. Fix ε > 0. We may find N ∈ N so that for
all n,m ≥ N we have ||αn − αm|| < ε/2. It follows that for all x ∈ X that

|αn(x)− f(x)| = lim
s→∞
|αn(x)− αm+s(x)| ≤ ε/2 < ε.

We thus have that α → f in norm. We may finally conclude that f is continuous
since it is a uniform limit of continuous functions. QED

3.4 C-Embedded Spaces

In functional analysis, many important questions and properties concern the bid-
ual of a vector space. Here, we call the function space C(X) the paradual. This
parallel suggests considering the paradual of a paradual, which is the subject of
this section.

Definition 3.4.1. For any convergence space X and x ∈ X , define evx ∈ CC(X) by
evx(f) = f(x) for all f ∈ C(X). Define then iX : X → CcCc(X) by iX(x) = evx for
all x ∈ X .

Remark 3.4.2. Note that the evaluation at a point map evx is merely a restriction of
the evaluation map. This justifies the continuity of evx and thus well definition of
iX .

Lemma 3.4.3. If X is any convergence space, then iX is continuous.

Proof. This follows from the observation that the transpose of iX is the evaluation
map ev : X × Cc(X) which is continuous. QED

Definition 3.4.4. A convergence space X is called c-embedded when iX : X →
Cc(Cc(X,R),R) is an embedding.

Note that here we specify the ground field as R. This is necessary as it is not at all
clear that the analogous definition using C would be equivalent. We will see that
in fact the c-embeddedness of a space is independent of the ground field. We will
first need a lemma.

Lemma 3.4.5. Suppose X is functionally Hausdorff and C ⊆ X is weakly closed. If
U ⊆ X is such that for some ε > 0 we have T (C, εD)(U) ⊆ ∆, then U ⊆ C.

Proof. Suppose for the sake of contradiction that there is x ∈ U with x /∈ C. Since
X is functionally Hausdorff, we have by Corollary 2.6.45 that Xσ is a Tychonoff
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space. We may thus find a continuous map f : X → [0, 1] so that f(C) = 0 and
f(x) = 1. We may extend the codomain of f to K. We then have that f(C) ⊆ εD, so
that f ∈ T (C, εD), but f(x) = 1 /∈ D. We thus have that T (C, εD)(U) 6⊆ D. We have
obtained a contradiction and conclude the proof. QED

We may now describe c-embedded spaces in more familiar terms.

Theorem 3.4.6. Suppose X is a convergence space. The map iX : X → CcCc(X) is an
embedding if and only if X is Choquet, functionally regular, and functionally Hausdorff.

Proof. Suppose iX is an embedding. We have that CcCc(X) is Choquet, function-
ally regular, and functionally Hausdorff by Proposition 3.2.16 since K has these
properties and thus by Proposition 2.4.18 that X has these properties since it is
homeomorphic to a subspace of CcCc(X).

For the other direction, assume now that X is Choquet, functionally regular, and
functionally Hausdorff. We will first prove that iX is an injection. Suppose x, y ∈ X
with iX(x) = iX(y). This means that for all continuous functions f : X → K we
have f(x) = f(y). We then have that for all f ∈ C(X) that f([x]) → f(y) and thus
that [x] →σ y. Equally well, we have [x] →σ x and since X is functionally Haus-
dorff, we see that x = y.

Now, we will prove that i−1
X is continuous. Suppose F is a filter on X so that

iX(F) → iX(x) for some x ∈ X . We aim to show that F → x. Since X is Choquet,
it suffices to show that U → x for all ultrafilters U ⊇ F . Suppose U is such an
ultrafilter.

Suppose to contradiction that U fails to converge. For every converging filter G
on X , we have that U 6⊇ Gσ. There is then GG ∈ G with GG

σ
/∈ U . We then have that

C = {GG
σ

: G is a converging filter on X}

is a covering system for X by σ-closed sets none of which are contained in U .

Define a filter on C(X) by

F = [{T (C, εD) : C ∈ C ∧ ε > 0}].

Since every filter converging in X contains some C ∈ C, we obtain that F → 0 in
Cc(X). It then follows that iX(U)(F ) → 0 in K. There is then some U ∈ U and
F ∈ F so that iX(U)(F ) = F (U) ⊆ D. Indeed, we may assume without loss of
generality

F = T (C1, ε1D) ∩ T (C2, ε2D) ∩ · · · ∩ T (Cn, εnD) ⊇ T (C1 ∪ C2 ∪ · · · ∪ Cn, min
1≤i≤n

εiD)

Further, since C1 ∪ C2 ∪ · · · ∪ Cn is σ-closed, we have by Lemma 3.4.5 that U ⊆
C1 ∪ C2 ∪ · · · ∪ Cn. But then C1 ∪ C2 ∪ · · · ∪ Cn ∈ U . But, since U is an ultrafilter
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and C1, ..., Cn /∈ U , we have that X r C1, ..., X r Cn ∈ U . This leads to ∅ ∈ U , a
contradiction. This contradiction shows that U converges to some y ∈ X . But since
iX(U) ⊇ iX(F), we have that iX(y) = iX(x) and x = y by injectivity. Since X is
Choquet, we have F → x. QED

Theorem 3.4.6 produces many useful corollaries.

We have that the conditions necessary and sufficient for X to embed into CC(X)
are independent of the value of the ground field K. This immediately gives

Corollary 3.4.7. A convergence space X is c-embedded if and only if iX : X → CC(X)
is an embedding regardless of the value of the ground field.

C-embeddedness is characterized by functional Hausdorffness, functional regular-
ity, and the Choquet property and by Proposition 2.4.18 and Proposition 2.6.5 (tak-
ing M to be the Choquet modification) these properties pass to subspaces. This
gives

Corollary 3.4.8. Subspaces of c-embedded spaces are c-embedded.

Further, recalling from Corollary 3.2.14 and Proposition 3.2.16 that CC(X) is func-
tionally Hausdorff, functionally regular, and Choquet since K is, we obtain

Corollary 3.4.9. For any convergence space X , the subspace iX(X) of CC(X) is c-
embedded.

Further still, it is an easy check that functional regularity, functional Hausdorff-
ness, and the Choquet property are all preserved under isomorphism. Thus,

Corollary 3.4.10. Any space homeomorphic to a c-embedded space is c-embedded.

Since all topological spaces are Choquet, we obtain

Corollary 3.4.11. A topological space is c-embedded if and only if it is functionally regular
and functionally Hausdorff.

Up until this point, we have given no explicit examples of c-embedded spaces.
Now, Theorem 3.4.6 allows us to show that many familiar types of spaces are c-
embedded.

Corollary 3.4.12. Tychonoff spaces are c-embedded.

Proof. Suppose X is a Tychonoff space. We immediately obtain that points may be
separated by continuous functions, and thus X is functionally Hausdorff

Suppose x ∈ X and U is an open neighborhood of x. We have that x /∈ X r U
which is closed. Let f : X → [0, 1] be a continuous function with f(x) = 1 and
f(X r U) = {0}. Define weakly closed C = f−1([1/2, 1]) ⊇ X r U . We then have

{x} ⊆ X r C ⊆ U
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Further, suppose α is a convergent net in X r C. We have that f(α) ≥ 1/2. Thus,

{x} ⊆ X r C ⊆ X r C
σ ⊆ U.

This shows that Nx
σ ⊇ Nx which means that X is functionally regular.

We conclude that X is c-embedded. QED

Thus, the realm of c-embedded spaces include

• R and C;

• All metric spaces;

• All compact Hausdorff spaces;

• All normal spaces.

Even though the only topological c-embedded spaces discussed thus far are Ty-
chonoff, there are non Tychonoff c-embedded topological spaces. In [BM76], the
authors classify all c-embedded topological spaces in more traditional topological
terms.

The last corollary to Theorem 3.4.6 we will give describes compact c-embedded
spaces.

Corollary 3.4.13. All compact c-embedded spaces are topological.

Proof. All c-embedded spaces are regular, Hausdorff, and Choquet. Since compact,
Choquet, regular, Hausdorff spaces are topological by Corollary 2.6.39, the result
follows. QED

3.5 C-Embedded Modification

As in Section 2.6 with Choquet, pretopological, topological, and Tychonoff spaces,
there is a modification which produces a c-embedded space from any convergence
space. The idea is to leverage Corollary 3.4.9.

Proposition 3.5.1. For any convergence spaces X and Y and continuous f : X → Y
define c(X) = iX(X) with its subspace convergence structure inherited from CcCc(X)
and c(f) be the domain-codomain restriction of f ∗∗ : CcCc(X) → CcCc(Y ). With this
definition, (c, i) is a modification of convergence spaces where i : id → c is the natural
transformation with component iX at each convergence space X .

Proof. We first check that c is a functor from CONV → CONV. By Corollary 3.2.21,
we have that f ∗∗ is continuous, so we really need only check that if f : X → Y is
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continuous, then f ∗∗(iX(X)) ⊆ iY (Y ). This holds as for all x ∈ X and h ∈ C(Y )

f ∗∗(iX(x))(h) = f ∗∗(evx)(h)

= evx ◦f ∗(h)

= evx(h ◦ f)

= h ◦ f(x)

= evf(x)(h)

= iY (f(x))(h)

so that f ∗∗(iX(x)) = iY (f(x)) as desired for f ∗∗(iX(X)) ⊆ iY (Y ).

If f : X → Y is a continuous mapping of convergence spaces, then the commuta-
tivity of

X Y

c(X) c(Y )

f

iX iY

c(f)

follows from the previous computation. Further, we have that each component of
i is continuous. Thus, i is a natural transformation.

We last need to check that i−1
X is continuous if there is a convergence space Y

with X ∼= c(Y ). We have by Corollary 3.4.9 that c(Y ) is c-embedded, so by Corol-
lary 3.4.10, X is c-embedded and so iX (or rather its codomain restriction) is a
homeomorphism. QED

The last result of this section will be that the paradual of a space is completely
determined by the paradual of its c-embedded modification.

Proposition 3.5.2. If X and Y are convergence spaces, the map cX,Y : C(X, Y ) →
C(c(X), c(Y )) given by f 7→ c(f) is continuous.

Proof. This follows from the observation that

C(X, Y )× c(X)

C(c(X), c(Y ))× c(X) c(Y )

T1(cX,Y )
(·)∗∗×id

ev

Commutes. Thus, T1(cX,Y ) is continuous as a composition of continuous functions.
QED

Theorem 3.5.3. If X and Y are convergence spaces and Y is c-embedded, then

C(X, Y ) ∼= C(c(X), Y ).
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Proof. Since Y is c-embedded, we have that iY : Y → c(Y ) is a homeomorphism.
We thus have that iY ∗ : C(c(X), Y )→ C(c(X), c(Y )) is a homeomorphism by func-
toriality. We then check that

C(c(X), Y ) C(X, Y )

C(c(X), c(Y ))

iY ∗

i∗X

cX,Y

commutes. Let f ∈ C(c(X), Y ). We claim that

iY ∗(f) = cX,Y ◦ i∗X(f)

To see this, fix any x ∈ X and h ∈ C(Y ). We observe

iY ∗(f)(iX(x))(h) = (iY ◦ f)(iX(x))(h)

= iY (f(iX(x)))(h)

= h(f(iX(x)))

and

(cX,Y ◦ i∗X)(f)(iX(x))(h) = cX,Y (f ◦ iX)(iX(x))(h)

= (f ∗∗ ◦ i∗∗X )(iX(x))(h)

= (f ∗∗(iX(x) ◦ i∗X))(h)

= (iX(x) ◦ i∗X ◦ f ∗)(h)

= iX(x)(h ◦ f ◦ iX)

= h(f(iX(x)))

as desired for commutativity. This then shows that i∗X has inverse (iY ∗)
−1 ◦ cX,Y .

QED





Chapter 4

Convergence Vector Spaces

In this chapter, we investigate convergence vector spaces, the convergence ana-
logue to topological vector spaces (Appendix D), closely following the exposition
in [BB02]. Many of the properties of convergence vector spaces can be discussed
purely in the context of the underlying group. We thus explore groups equipped
with convergence structures in the first section. In the next, we consider conver-
gence vector spaces and various properties and constructions. In the third section,
we specialize to locally convex vector spaces and learn how to turn any conver-
gence vector space into a locally convex topological vector space. In the last sec-
tion, we discuss some basic properties of duality.

4.1 Convergence Groups

Definition 4.1.1. A convergence group is a group G so that the group operation + :
G×G→ G and inversion −(·) : G→ G are continuous.

Remark 4.1.2. Since we study convergence groups with the goal of learning about
convergence vector spaces, we will write our groups additively. This will make the
notational transition to vector spaces smoother. Despite this notational choice, we
will not assume that these groups are abelian.

From Definition 4.1.1 we immediately obtain several other useful continuous maps.

Lemma 4.1.3. If G is a group and g ∈ G,

1. the difference map − : G×G→ G given by (h, k) 7→ h− k is continuous;

2. the translation map g + (·) : G→ G given by h 7→ g + h is continuous;

3. the translation map (·) + g : G→ G given by h 7→ h+ g is continuous.

Remark 4.1.4. The maps g + (·) : G→ G and (·) + g : G→ G are homeomorphisms
with inverses given by −g + (·) : G→ G and (·)− g : G→ G respectively.
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Defining convergence groups as in Definition 4.1.1 will make the parallel to con-
vergence vector spaces (Definition 4.2.1) perfectly clear. However, verifying that a
particular group satisfies the definition may be expedited by using the following
result

Proposition 4.1.5. A group G is a convergence group if and only if the difference map
− : G×G→ G given by (h, k) 7→ h− k is continuous.

Proof. In light of Definition 4.1.1 and Lemma 4.1.3, we need only verify that the
continuity of the difference implies continuity of inversion and addition. For this,
it is enough to note that −g = 0 − g and g + h = g − (−h) for all g, h ∈ G so that
inversion and addition are merely compositions of continuous functions. QED

Several properties of convergence groups are determined by the behavior of the
identity element.

Proposition 4.1.6. A group homomorphism ϕ : G→ H of convergence groups is contin-
uous if and only if it is continuous at 0.

Proof. Certainly, if ϕ is continuous, it is continuous at 0. Now, suppose ϕ is con-
tinuous at 0. Fix g ∈ G and a filter F → g. We then have that F − g → 0 and
ϕ(F − g) → 0 by continuity at 0. We see that ϕ(F − g) = ϕ(F) − ϕ(g). Therefore,
adding ϕ(g) to both sides, we obtain ϕ(F)→ ϕ(g). QED

Proposition 4.1.7. A convergence group G is Hausdorff if and only if {0} is closed.

Proof. Suppose G is Hausdorff. Any net in {0} is constant and thus converged to
0. Since G is Hausdorff, this limit is unique. Thus, a({0}) = {0} and we have that
{0} is closed.

Now, suppose that {0} is closed. Suppose α is a net in G so that α→ g, h for some
g, h ∈ G. We have that α − α → g − h. We have that α − α has subnet β which is
constantly 0. We then have that β → g−h. We then have that g−h ∈ a({0}) = {0}.
Therefore, g = h and we have that G is Hausdorff. QED

Proposition 4.1.8. Any pretopological convergence group is topological.

Proof. Suppose G is a pretopological convergence group with S ⊆ G and g ∈
a(a(S)). Suppose N is a vicinity of g. We have that Vg → g and V0 → 0 so that
Vg + V0 → g and Vg + V0 ⊇ Vg. Therefore, there are vicinities U of g and V of 0 so
that N ⊇ U + V .

Since g ∈ a(a(S)), there is a filter F → g with a(S) ∈ F . We thus have that
F ⊇ Vg. Therefore, U ∈ F and a(S)∩U 6= ∅. There is, therefore, some h ∈ a(S)∩U
witnessed by filter H → h with S ∈ H ⊇ Vh. We have by Corollary 2.2.26 that
h+ V ∈ Vh. Therefore, S ∩ (h+ V ) 6= ∅.

Since h ∈ U , we now have that S ∩ (U + V ) 6= ∅. Therefore,

N ∩ S ⊇ S ∩ (U + V ) 6= ∅.
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As this holds for all vicinities N of g, we may consider the filter Vg ∩ S ⊇ Vg. Thus,
since G is pretopological, we have that Vg ∩ S → g Since S ∈ Vg ∩ S, we have that
g ∈ a(S). We conclude that a(a(S)) = a(S). AsG is pretopological with idempotent
adherence, we have by Theorem 2.6.11 that G is topological. QED

Convergence groups interact well with initial and quotient convergence structures.

Proposition 4.1.9. LetG be a group and {Gi}i∈I be a family of convergence groups so that
for each i ∈ I there is a group homomorphism ϕi : G → Gi. Then the initial convergence
structure on G with respect to the ϕi is a group convergence structure.

Proof. For each i ∈ I , consider the following diagram

G×G Gi ×Gi

G Gi

ϕi×ϕi

− −

ϕi

which commutes because ϕi is a homomorphism. The initial convergence structure
assures us that the ϕi are continuous. Thus, the ”top path” is continuous as a
composition. We then obtain that ϕi ◦ − is continuous for all i ∈ I which shows
that− : G×G→ G is continuous via Proposition 2.3.5 and that G is a convergence
group by Proposition 4.1.5. QED

Lemma 4.1.10. If G is a convergence group and N a normal subgroup, equip G/N with
the final convergence structure over the quotient map q : G → G/N , i.e. the quotient
convergence structure over q. A filter F on G/N converges to g +N if and only if there is
a filter G on G converging to g so that F ⊇ q(G).

Proof. The sufficiency of this condition is evident in light of Definition 2.3.23. We
prove necessity. Suppose g ∈ G and there is a filter F → g + N in G/N . Then
by Proposition 2.3.28 we have that there are g1, ..., gn ∈ g + N so that for each
i = 1, ..., n there are filters Fi → gi in G so that F ⊇

⋂
i∈I q(Fi). We then have that

Fi − gi + g → g by Lemma 4.1.3. Let G =
⋂n
i=1Fi − gi + g. We have that G → g.

Further, we have that

q(G) =
n⋂
i=1

q(Fi − gi + g) =
n⋂
i=1

q(Fi).

Therefore, F ⊇ q(G) as desired. QED

Remark 4.1.11. This argument works just as well when the quotient is realized by
some surjective group homomorphism rather than quotienting out a subgroup.

Proposition 4.1.12. If G is a convergence group and N a normal subgroup of G, then
G/N with the quotient convergence structure over the quotient map q : G → G/N is a
convergence group.
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Proof. By Proposition 4.1.5, we need only check that − : G/N × G/N → G/N is
continuous. Let g, h ∈ G andH be a filter on G/N ×G/N withH → (g+N, h+N).
There are then filters H1,H2 on G/N so that H1 → g + N and H2 → h + N and
H ⊇ H1 × H2. By Lemma 4.1.10, we have filters F → g and G → h in G and
H1 ⊇ q(F) and H2 ⊇ q(G). We know that F − G → g − h. By continuity of the
quotient, we have

q(F)− q(G) = q(F − G)→ g − h+N.

Since

H ⊇ H1 ×H2 ⊇ q(F)× q(G),

we now have that −H → g − h+N so that − : G/N ×G/N → G/N is continuous.
We conclude that G/N is a convergence group. QED

The topological properties of a normal subgroup determine many properties of the
quotient space.

Proposition 4.1.13. Suppose G is a convergence group with normal subgroup N .

(a) The quotient G/N is Hausdorff if and only if N is closed.

(b) The quotient G/N is discrete4 if and only if N is open.

Proof. We show (a) first. By Proposition 4.1.7, it suffices to show that N being
closed in G is equivalent to {N} closed in G/N .

Certainly if {N} is closed, then its preimage N under the continuous quotient map
q : G→ G/N is also closed. Conversely, assume that {N} is not closed. Thus, there
is some g ∈ G so that [N ] → g + N but g /∈ N . We find a filter F → g in G so
that [N ] ⊇ q(F). It follows that for each F ∈ F we have F ∩ N 6= ∅. We have that
F ∩N ⊇ F so that F ∩N → g and N ∈ F ∩N . Therefore, g ∈ a(N). As it has been
established that g /∈ N , we have that a(N) 6= N . So N is not closed.

We now prove (b). Suppose G/N is discrete, that is only the point filters converge.
Suppose g ∈ N and there is a filter F → g. We have that q(F) → N . Therefore,
q(F) = [N ]. There is then F ∈ F with q(F ) = N . This is only possible if D ⊆ N .
Therefore, N ∈ F . This holds for all g ∈ N and F → g, so we have that N is open.

Now, suppose that N is open. Suppose F → gN in G/N . Then F − g + N → N .
There is then some filter G converging to 0 so that F − g + N ⊇ q(G). Since N 3 0
is open, we have that N ∈ G and thus q(G) = [N ]. Therefore, F − g + N = [N ]
and F = [g + N ]. Therefore, all converging filters are point filters and G/N is
discrete. QED

4The only converging filters are point filters, and these only converge to their generating point.
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We recall from Theorem 2.3.31 that quotients of topological convergence spaces
need not be topological. However, for groups, quotients are more well behaved.

Theorem 4.1.14. If G is topological and N a normal subgroup of G, then G/N is topolog-
ical.

Proof. By Proposition 4.1.8, it suffices to check that G/N is pretopological. Fix g ∈
G and V a vicinity of g. Suppose F → g + N in G/N . By Lemma 4.1.10 we have
some filter G → g so that F ⊇ q(G). We have then that V ∈ G since V is a vicinity
of g. Therefore, q(V ) ∈ F . This shows, q(V ) is a vicinity of g + N . We then have
that Vg+N ⊇ q(Vg). Since G is topological, Vg → g, and by continuity of q, we have
q(Vg)→ g+N . Therefore, Vg+N → g+N , so that the vicinity filters inG/N converge
and G/N is pretopological. QED

4.2 Convergence Vector Spaces

Definition 4.2.1. A vector space V is called a convergence vector space or CVS when
it is equipped with a convergence structure so that vector addition + : V × V → V
and scalar multiplication · : K× V → V are continuous.

Remark 4.2.2. By comparing the above definition to Definition 4.1.1, it is clear that
all convergence vector spaces are convergence groups. Further, all topological vec-
tor spaces, see Definition D.2.1, are convergence vector spaces.

We will now present a key class of convergence vector spaces, function spaces with
codomain a convergence vector space.

Lemma 4.2.3. If X is a convergence space, V a CVS, λ ∈ K, and f, g ∈ C(X, V ), then

1. f + g ∈ C(X, V );

2. λf ∈ C(X, V ).

Proof. This follows from the fact that the following diagrams commute

X X ×X V × V X X ×X K× V

V V

∆

f+g

f×g

+

∆

λf

λ∗×f

·

where ∆ : X → X ×X is given by x 7→ (x, x) which is continuous by the universal
property of products and λ∗ : X → K is given by x 7→ λ which is continuous since
any constant function is continuous. QED

Proposition 4.2.4. If X is a convergence space and V a convergence vector space, then
C(X, V ) is also a convergence vector space when endowed with the usual pointwise oper-
ations.
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Proof. We must show that + : C(X, V )×C(X, V )→ C(X, V ) and · : K×C(X, V )→
C(X, V ) are continuous. We consider their transposes. We see that T1(+) (and thus
+) is continuous by noting that

C(X, V )× C(X, V )×X V

C(X, V )× C(X, V )×X ×X C(X, V )×X × C(X, V )×X V × V

T1(+)

id× id×∆

∼= ev× ev

+

commutes. Likewise for scalar multiplication, we see that

K× C(X, V )×X

K× V V

idK× ev
T1(·)

·

commutes as needed to show scalar multiplication is continuous. QED

Corollary 4.2.5. If X is a compact convergence space, then C(X) is a Banach space under
supremum norm.

Proof. Since X is compact and iX : X → c(X) is a continuous surjection, we have
that c(X) is compact. Since c(X) is also c-embedded, it is topological by Corol-
lary 3.4.13. We then have C(X) ∼= C(c(X)) = CCco(c(X)) by Theorem 3.5.3 and
Theorem 3.3.6. Further, by this same result, CCco(c(X)) is a Banach space under
supremum norm.

It is not difficult to check that the isomorphism of Theorem 3.5.3 is linear, from
which it follows that C(X) is a Banach space with norm

||f || : = sup
z∈c(X)

|i−1
K∗ ◦ cX,K(f)(z)|

To show that ||f || = supx∈X |f(x)|, it suffices to show that i∗X : C(c(X)) → C(X) is
norm preserving. Let f ∈ C(c(x)) and x ∈ X . We have that i∗X(f)(x) = f ◦ iX(x) =
f(evx). Thus,

sup
x∈X
|i∗X(f)(x)| = sup

x∈X
|f(evx)| = sup

z∈c(X)

|f(z)|

as desired. QED

Notation 4.2.6. If V and W are convergence vector spaces, then we adopt the fol-
lowing notations

1. L(V,W ) denotes the space of continuous linear maps from V to W viewed as
a subspace of C(V,W ).

2. L(V ) = L(V,K).
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3. D denotes the open unit ball in K.

4. D denotes the neighborhood filter of 0 in K. We note that D = [{εD : ε > 0}].
Since proofs involving convergence in a vector space often rely on both filters or
nets and the linear structure, it is useful to know how these interact. The following
lemma gathers together some useful equalities and containments. We phrase these
in terms of filters and analogous formulations for nets may be obtained by passing
through eventuality filters.

Lemma 4.2.7 (Filter Algebra). Let V,W be vector spaces over K. Let v, w ∈ V and
α, β ∈ K and F ,G ∈ Φ(V ) and A,B ∈ Φ(K) and f : V → W be a linear map. The
following hold:

1. (F + G) + (v + w) = (F + v) + (G + w)

2. α(F + G) = αF + αG

3. α(F + v) = αF + αv

4. A(F + G) ⊇ AF +AG

5. A(F + v) ⊇ AF +Av

6. A(Bv) = (AB)v

7. DD = D

8. αD = D if α 6= 0

9. f(F + G) = f(F) + f(G)

10. Af(F) = f(AF)

11. αf(F) = f(αF)

12. F = F + [0]

13. A(v + w) ⊇ Av +Aw
Proof. We will consider each result in turn. For notational convenience, define
A : V ×V → V to be vector addition andm : K×V → V to be scalar multiplication.
For each x ∈ V , define Ax : V → V given by y 7→ y + x. For each λ ∈ K, define
mλ : V → V given by y 7→ λy.

1. Observe that Av+w ◦ A = A ◦ (Av × Aw). We then compute

(F + G) + (v + w) = Av+w ◦ A(F × G)

= A ◦ (Av × Aw)(F × G)

= A(Av(F)× Aw(G)) (Proposition 1.6.15)
= A((F + v)× (G + v))

= (F + v) + (G + v).

This is the desired result for (1).
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2. Observe that mα ◦ A = A ◦ (mα ×mα). We then compute

α(F + G) = mα ◦ A(F × G)

= A ◦ (mα ×mα)(F × G)

= A(αF × αG) (Proposition 1.6.15)
= αF + αG

This is the desired result for (2).

3. Observe that mα ◦ Av = Aαv ◦mα. We then compute

α(F + v) = mα ◦ Av(F)

= Aαv ◦mα(F)

= Aαv(αF)

= αF + αv.

This is the desired result for (3).

4. Suppose U ∈ AF + AG. We then have A1, A2 ∈ A and F ∈ F and G ∈ G so
that

U ⊇ A1F + A2G

⊇ (A1 ∩ A2)F + (A1 ∩ A2)G

⊇ (A1 ∩ A2)(F +G)

∈ A(F + G)

We then have that U ∈ A(F + G) as desired.

5. Suppose U ∈ AF +Av. We then have A1, A2 ∈ A and F ∈ F so that

U ⊇ A1F + A2v

⊇ (A1 ∩ A2)F + (A1 ∩ A2)v

⊇ (A1 ∩ A2)(F + v)

∈ A(F + v)

We then have that U ∈ A(F + v) as desired.

6. Let U ∈ A(Bv). We then have A ∈ A and B ∈ B so that U ⊇ A(Bv) = (AB)v.
Thus, U ∈ (AB)v. The other inclusion follows in like manner.

7. Suppose U ∈ D2. We have that U ⊇ D1D2 for some D1, D2 ∈ D. We then
have some ε1, ε2 > 0 so that D1 ⊇ ε1D and D2 ⊇ ε2D and U ⊇ (ε1D)(ε2D). If
z1, z2 ∈ K with |z1| < ε1 and |z2| < ε2, then |z1z2| < ε1ε2. Thus,

(ε1D)(ε2D) ⊆ ε1ε2D.
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Further, if z ∈ ε1ε2D, then z = ε1ε2s for some s ∈ D. If s = 0, then z = 0 and
z ∈ (ε1D)(ε2D). Else, we then compute

z = ε1ε2s

= ε1ε2|s|
s

|s|

=
(
ε1|s|1/2

)(
ε2|s|1/2

s

|s|

)
.

Since s ∈ D, we have |s|1/2 < 1. Thus, ε1|s|1/2 ∈ ε1D and similarly ε2|s|1/2 s
|s| ∈

ε2D. Thus, z ∈ (ε1D)(ε2D). Therefore,

(ε1D)(ε2D) = ε1ε2D.

So, U ⊇ ε1ε2∆ ∈ D so that U ∈ D. We conclude that D2 ⊆ D.

Lastly, we have that D2 ⊇ D since multiplication is continuous in K and
D → 0.

8. Since K is a topological vector space, we have that D → 0 and scalar multi-
plication is continuous. So, αD → 0 which implies αD ⊇ D. We also have
that 1

α
D → 0, so 1

α
D ⊇ D. But then

D = α
1

α
D ⊇ αD ⊇ D.

We then conclude that αD = D as desired for (8)

9. Observe that f ◦ A = A ◦ (f × f) since f is linear. Therefore,

f(F + G) = f ◦ A(F × G)

= A ◦ (f × f)(F × G)

= A(f(F)× f(G)) (Proposition 1.6.15)
= f(F) + f(G)

as desired for (9).

10. We observe that m ◦ (idK×f) = f ◦m by linearity of f . Therefore,

Af(F) = m ◦ (idK×f)(A×F)

= f ◦m(A×F)

= f(AF)

as desired for (10).
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11. We observe that mα ◦ f = f ◦mα by linearity of f . Therefore,

αf(F) = mα ◦ f(F)

= f ◦mα(F)

= f(αF)

as desired for (11).

12. SupposeH ∈ F+[0]. There is then some F ∈ F and G ∈ [0] so thatH ⊇ F+G.
Since 0 ∈ G, we have F + G ⊇ F . Thus, H ⊇ F and H ∈ F . This shows
F ⊇ F + [0].

One the other hand, if F ∈ F , then

F = F + {0} ∈ F + [0]

so that F ⊆ F + [0].

13. Suppose H ∈ Av+Aw. There is then some S1, S2 ∈ A so that H ⊇ S1v+wS2.
Then

H ⊇ S1v + S2w ⊇ (S1 ∩ S2)(v + w) ∈ A(v + w).

Thus A(v + w) ⊇ Av +Aw.

QED

The convergence structure of a CVS is entirely dependent on the convergence of
filters to 0. That is, a filterF on a CVS V converges to v ∈ V if and only ifF−v → 0.
The following theorem enables us to define a convergence structure on a vector
space V making V a CVS by merely specifying which filters converge to 0.

Theorem 4.2.8. Let V be a vector space. Let Ψ be a collection of filters on V so that

1. If F ,G ∈ Ψ then F ∩ G ∈ Ψ;

2. If F ∈ Ψ and G ⊇ F , then G ∈ Ψ;

3. If F ,G ∈ Ψ, then F + G ∈ Ψ;

4. If F ∈ Ψ then DF ∈ Ψ;

5. If F ∈ Ψ and α ∈ K then αF ∈ Ψ.

6. If v ∈ V , then Dv ∈ Ψ.

The relation F → v if and only if F − v ∈ Ψ is a convergence structure on V making V a
convergence vector space.

Proof. We must first check the three properties of convergence spaces.
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1. First, note that D0 = [0] ∈ Ψ. Thus, if v ∈ V , then [v] − v = [0] and we have
[v]→ v.

2. Suppose F → v and G ⊇ F . We have that G − v ⊇ F − v ∈ Ψ so that G → v.

3. Lastly, suppose that F ,G → v. We then have that F − v,G − v ∈ Ψ. It follows
that (F−v)∩(G−v) ∈ Ψ. However, we have that (F−v)∩(G−v) = F∩G−v.
We conclude that F ∩ G → v.

We have established that this is a convergence structure. We now move to prove
continuity of addition and scalar multiplication. Suppose we have filters F ,G on
V so that F × G → (v, w) ∈ V × V . We then have F − v,G − w ∈ Ψ. Then we have
that

(F + G)− (v + w) = (F − v) + (G − w) ∈ Ψ,

so that F + G → v + w, proving that addition is continuous.

Likewise for scalar multiplication, suppose that we have filters N ,F on K and
V respectively so that N × F → (λ, v) ∈ K × V . We then have that N → λ and
F → v. This of course means that F − v ∈ Ψ. Let D(λ) denote the neighborhood
filter of λ. Since K is topological, we have that N ⊇ D(λ). Further, observe that
D(λ) = D + λ. Thus,

NF − λv ⊇ (D + λ)F − λv
= (D + λ)((F − v) + v)− λv
⊇ D(F − v) + λ(F − v) +Dv + λv − λv
= D(F − v) + λ(F − v) +Dv
∈ Ψ.

We thus have that NF − λv ∈ Ψ as desired for NF → λv. We have thus shown
that scalar multiplication is continuous. QED

Corollary 4.2.9. If V is a vector space with convergence structure→ and

Ψ := {F ∈ Φ(X) : F → 0}

satisfies (1) - (6) of Theorem 4.2.8 and for each v ∈ V the translation (·) + v : V → V is
continuous, then V with this convergence structure is a convergence vector space.

Proof. Define a convergence structure→Ψ on V byF →Ψ v if and only ifF−v ∈ Ψ.
By Theorem 4.2.8, this is a convergence vector space structure. For any F ∈ Φ(V )
and v ∈ V , one has

F →Ψ v ⇐⇒ F − v ∈ Ψ

⇐⇒ F − v → 0

⇐⇒ F → v

by continuity of (·) − v and (·) + v. Thus,→ and→Ψ are identical and (V,→) is a
CVS. QED
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We now turn our attention to the initial and final convergence structures. We will
see that the initial convergence structure over a family of linear maps into a family
of convergence vector spaces will define a CVS. The final convergence structure
given in Definition 2.3.23, however, is less well behaved and in general cannot be
expected to produce a CVS. Thus, a new final vector space convergence structure
will be given which will satisfy a universal property akin to Proposition 2.3.24. We
will then see that quotient spaces defined by this new final structure will be exactly
the same a quotients in the sense of Definition 2.3.27.

Proposition 4.2.10. If {ϕi : V → Vi} is a family of linear maps from vector space V to
convergence vector spaces Vi, then V is a convergence vector space when endowed with its
initial convergence structure.

Proof. That addition and scalar multiplication are continuous follows from Propo-
sition 2.3.5 and the commutativity of the following diagrams for all i ∈ I

V × V Vi × Vi K× V K× Vi

V Vi V Vi

+

ϕi×ϕi

+ ·

idK×ϕi

·

ϕi ϕi

QED

This means that we may obtain subspaces and products of convergence vector
spaces in the expected way, simply by taking a subspace or product of the under-
lying convergence spaces and vector spaces individually.

Definition 4.2.11. Let V be a vector space and {ϕi : Vi → V }i∈I a family of linear
maps from convergence vector spaces Vi to V . Let Ω be the set of all vector space
convergence structures on V making each ϕi continuous.5 Denote by Vω the vector
space V equipped with convergence structure ω ∈ Ω. We define the final vector
space convergence structure on V relative to the {ϕi}i∈I to be the initial convergence
structure relative to the family of inclusions {ιω : V → Vω}ω∈Ω.

Remark 4.2.12. The condition required for convergence in this final structure can be
stated more plainly as

A filter converges in V if and only if it converges in every convergence
space Vω so that each ϕi : Vi → Vω is continuous.

Stated this way, one can see that the final vector space convergence structure is
the convergence structure on V making as few filters converge as possible but still
making each ϕi : Vi → V continuous. The upshot to involving the initial conver-
gence structure in the definition is that Proposition 4.2.10 assures us that V is a
CVS when equipped with the final vector space convergence structure.

5Note that Ω is non-empty since it contains the chaotic convergence structure: all filters converge
to all points.
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As advertised, we have an analogue to Proposition 2.3.24

Proposition 4.2.13. Let V be a vector space equipped with the final vector space conver-
gence structure relative to {ϕi : Vi → V }i∈I , a family of linear maps from convergence
vector spaces Vi to V . Then if W is a convergence vector space and f : V → W linear,
then f is continuous if and only if the composition f ◦ ϕi is continuous for all i ∈ I .

Proof. Certainly, if f is continuous, then f ◦ ϕi is continuous. Suppose then that
f ◦ ϕi is continuous for each i ∈ I . Let V ′ denote V with the initial convergence
structure relative to f and let ι : V → V ′ be given by x 7→ x. By Proposition 4.2.10,
we have that V ′ is a CVS. Fix i ∈ I . We then have that ϕi : Vi → V ′ and ϕi ◦ f is
continuous. So, by Proposition 2.3.5, we have that ϕi : V → V ′ is continuous for all
i ∈ I . Thus, ι : V → V ′ is one of the maps over which V has the initial convergence
structure. Thus, ι : V → V ′ is continuous. But, tolerating a slight abuse of notation,
f : V → W is exactly f ◦ιwhich is a composition of continuous functions, and thus
continuous. QED

Corollary 4.2.14. Let V be a CVS and {ϕi : Vi → V }i∈I a family of linear maps from
convergence vector spaces Vi to V . If V satisfies the property (∗)

ifW is a convergence vector space and f : V → W linear, then f is continuous
if and only if the composition f ◦ ϕi is continuous for all i ∈ I

then V carries the final vector space convergence structure over {ϕi : Vi → V }i∈I .

Proof. Let V and V ′ be two CVSs satisfying (∗) and thus having the same underly-
ing vector space. Let ι : V → V ′ be given by x 7→ x. For each i ∈ I , we have the
commutative diagram

Vi

V V ′

ϕi
ϕi

ι

Since idV ′ : V ′ → V ′ is continuous and ϕi = idV ′ ◦ϕi, we have by (∗) that ϕi : Vi →
V ′ is continuous for all i ∈ I . But then from the diagram and (∗), we have that ι is
continuous. By identical reasoning ι−1 : V ′ → V is continuous. The continuity of
ι and ι−1 is exactly the statement that V and V ′ have the same converging filters.
Thus, V = V ′.

Since the underlying set of V with the final vector space convergence structure
over {ϕi : Vi → V }i∈I satisfies (∗), we have that if V satisfies (∗), then V carries the
final vector space convergence structure. QED

The following theorem, following some technical lemmas, gives a more explicit
description of the final vector space convergence structure.

Lemma 4.2.15. If V is a vector space and F ,G are filters on V , then

[0] ∩ (F + G) ⊇ [0] ∩ F + [0] ∩ G.
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Proof. Let H ∈ [0] ∩ F + [0] ∩ G. There is then F ∈ F with 0 ∈ F and G ∈ G with
0 ∈ G so that H ⊇ F + G. Then 0 ∈ F ∩ G so that F + G ∈ [0] ∩ (F + G) and
H ∈ [0] ∩ (F + G). This shows the desired containment. QED

Lemma 4.2.16. If V is a vector space and F ,G are filters on V with [0] ⊇ F ,G then
F ∩ G ⊇ F + G.

Proof. Let H ∈ F + G. Then there are F ∈ F and G ∈ G with H ⊇ F + G. Then
since 0 ∈ F,G, we have F + G ⊇ G. and F + G ⊇ F . Thus, H ∈ G and H ∈ F .
Therefore, H ∈ F ∩ G. QED

Lemma 4.2.17. If ϕ : V → W is a linear mapping of vector spaces, and F ∈ Φ(V ), then

[0] ∩ ϕ(F) ⊇ ϕ([0] ∩ F).

Proof. Suppose H ∈ ϕ([0] ∩ F). There is then F ∈ F with 0 ∈ F so that H ⊇ ϕ(F ).
Since ϕ(0) = 0 by linearity, we have 0 ∈ ϕ(F ). Thus, 0 ∈ H and H ∈ ϕ(F). We
conclude that H ∈ [0] ∩ ϕ(F) as necessary for containment. QED

Theorem 4.2.18. Let V be a vector space and {ϕi : Vi → V | i ∈ I} be a family of linear
maps from convergence vector spaces Vi to V . Define Ψ to be the family of filters F on V
so that there are finitely many indices J ⊆ I and for each j ∈ J a filter Fj converging to 0
in Vj as well as finitely many v1, ..., vm ∈ V so that

F ⊇
∑
j∈J

ϕj(Fj) +
m∑
k=1

Dvk.

Then the final vector space convergence structure on V relative to the {ϕi}i∈I is given by
F → v if and only if F − v ∈ Ψ.

Proof. The proof will proceed in two stages. First, we will prove that the relation
F → v if and only if F − v ∈ Ψ is a convergence structure by checking conditions
(1)-(6) of Theorem 4.2.8. We will then prove that this relation is the final vector
space convergence structure by showing that it satisfies the condition (∗) of Corol-
lary 4.2.14.

We check (1), Ψ is closed under intersections. Suppose F ,G ∈ Ψ. We then have
that there are two finite subcollection J,K ⊆ I and for each j ∈ J and k ∈ K
filters Fj,Gk converging to 0 in Vj and Vk respectively as well as finitely many
v1, ..., vm, w1, ..., wn ∈ V so that

F ⊇
∑
j∈J

ϕj(Fj) +
m∑
s=1

Dvs

and

G ⊇
∑
k∈K

ϕk(Gk) +
n∑
t=1

Dwt.
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We then have

F ∩ G ⊇ ([0] ∩ F) ∩ ([0] ∩ G)

⊇
(∑

j∈J

[0] ∩ ϕj(Fj) +
m∑
s=1

[0] ∩ Dvs
)
∩
(∑
k∈K

[0] ∩ ϕk(Gk) +
n∑
t=1

[0] ∩ Dwt
)

(Lemma 4.2.15)

⊇
∑
j∈J

[0] ∩ ϕj(Fj) +
∑
k∈K

[0] ∩ ϕk(Gk) +
m∑
s=1

[0] ∩ Dvs +
n∑
t=1

[0] ∩ Dwt

(Lemma 4.2.16)

=
∑
j∈J

[0] ∩ ϕj(Fj) +
∑
k∈K

[0] ∩ ϕk(Gk) +
m∑
s=1

Dvs +
n∑
t=1

Dwt (0 ∈ D)

⊇
∑
j∈J

ϕj([0] ∩ Fj) +
∑
k∈K

ϕk([0] ∩ Gk) +
m∑
s=1

Dvs +
n∑
t=1

Dwt. (Lemma 4.2.17)

Since [0]→ 0 in each Vi and for each j ∈ J and k ∈ K we have Fj → 0 and Fk → 0
we have both [0]∩Fj → 0 and [0]∩Fk → 0. Thus, by definition, F ∩G ∈ Ψ. This is
condition (1) of Theorem 4.2.8.

Conditions (2) and (3) are immediate given the definition of Ψ.

We now check (4). Suppose F ∈ Ψ. There are then finitely many indices J ⊆ I and
for each j ∈ J a filter Fj converging to 0 in Vj as well as finitely many v1, ..., vm ∈ V
so that

F ⊇
∑
j∈J

ϕj(Fj) +
m∑
k=1

Dvk.

We then have

DF ⊇
∑
j∈J

Dϕj(Fj) +
m∑
k=1

DDvk (Lemma 4.2.7 (4))

=
∑
j∈J

Dϕj(Fj) +
m∑
k=1

Dvk (Lemma 4.2.7 (7))

=
∑
j∈J

ϕj(DFj) +
m∑
k=1

Dvk (Lemma 4.2.7 (10))

Since for each j ∈ J we have that Vj is a convergence space, so DFj → 0. Thus,
DF ∈ Ψ as desired for (4).

We now check (5). Suppose F ∈ Ψ. If α = 0, then αF = [0]. Since [0] ⊇ D[0],
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we have αF ∈ Ψ. Else, there are finitely many indices J ⊆ I and for each j ∈ J a
filter Fj converging to 0 in Vj as well as finitely many v1, ..., vm ∈ V so that

F ⊇
∑
j∈J

ϕj(Fj) +
m∑
k=1

Dvk.

We then have

αF =
∑
j∈J

αϕj(Fj) +
m∑
k=1

αDvk (Lemma 4.2.7 (3))

=
∑
j∈J

αϕj(Fj) +
m∑
k=1

Dvk (Lemma 4.2.7 (8))

=
∑
j∈J

ϕj(αFj) +
m∑
k=1

Dvk (Lemma 4.2.7 (11))

Since for each j ∈ J we have that Vj is a convergence space, so αFj → 0 since
Fj → 0. Thus, αF ∈ Ψ as desired for (5).

We lastly have that (6) follows immediately from the definition of Ψ. We have
completed the first section of the proof: the relation F → v if and only if F − v ∈ Ψ
is a convergence structure on V by Theorem 4.2.8.

We will now check condition (∗) of Corollary 4.2.14. Fix i ∈ I . Suppose F ∈ Φ(Vi)
is such that F → 0. Then ϕi(F) ∈ Ψ, so ϕi(F)→ 0. Therefore, ϕi is continuous at 0
and by Proposition 4.1.6 we have that ϕi is continuous.

Now, fix a convergence vector space W and f : V → W linear. If f is continu-
ous, then f ◦ ϕi is continuous for each i ∈ I .

Finally, suppose f ◦ ϕi is continuous for each i ∈ I . Suppose there is a filter F → 0
in V . Then F ∈ Ψ and there are finitely many indices J ⊆ I and for each j ∈ J a
filter Fj converging to 0 in Vj as well as finitely many v1, ..., vm ∈ V so that

F ⊇
∑
j∈J

ϕj(Fj) +
m∑
k=1

Dvk.

We then have

f(F) ⊇
∑
j∈J

f ◦ ϕj(Fj) +
m∑
k=1

Df(vk)

by Lemma 4.2.7. Each summand converges to 0 inW since each f ◦ϕi is continuous
and D → 0 in K. So f is continuous at 0 and thus, by Proposition 4.1.6, we have
that f is continuous.
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We have verified condition (∗) of Corollary 4.2.14 which demonstrates that the
relation F → v if and only if F − v ∈ Ψ is the final vector space convergence
structure. QED

Corollary 4.2.19. Let V be a CVS with the final vector space convergence structure rela-
tive to linear maps {ϕi : Vi → V }i∈I out of CVSs Vi. If V = span

⋃
i∈I ϕi(Vi) then a filter

F → 0 in V if and only if we have finitely many indices J ⊆ I and for each j ∈ J a filter
Fj converging to 0 in Vj so that

F ⊇
∑
j∈J

ϕj(Fj).

Proof. Given Theorem 4.2.18, it suffices to show this containment if F → 0. To
this end, suppose F ∈ Φ(V ) and F → 0. We may then find finitely many indices
J ⊆ I and for each j ∈ J a filter Fj converging to 0 in Vj as well as finitely many
v1, ..., vm ∈ V so that

F ⊇
∑
j∈J

ϕj(Fj) +
m∑
k=1

Dvk.

For each k = 1, ...,m we have vk ∈ span
⋃
i∈I ϕi(Vi). Thus, we may find a finite

subset Jk ⊆ I and for each j ∈ Jk a finite sub-collection Zk,j ⊆ Vj and for each
z ∈ Zk,j some scalar αk,j(z) ∈ K so that

vk =
∑
j∈Jk

∑
z∈Zk,j

αk,j(z)ϕj(z).

We then have

F ⊇
∑
j∈J

ϕj(Fj) +
m∑
k=1

∑
j∈Jk

∑
z∈Zk,j

αk,j(z)Dϕj(z)

=
∑
j∈J

ϕj(Fj) +
m∑
k=1

∑
j∈Jk

∑
z∈Zk,j

Dϕj(z)

by Lemma 4.2.7 (8) and (13). For each j ∈ J1rJ , define Fj ∈ Φ(Vj) by Fj = [0]. For
each j ∈ J r J1, define Z1,j = ∅. Define Ĵ1 = J1 ∪ J and for k = 2, ...,m set Ĵk = Jk.
We then have by Lemma 4.2.7 (12) that

F =
∑
j∈Ĵ1

ϕj(Fj) +
m∑
k=1

∑
j∈Ĵk

∑
z∈Zk,j

Dϕj(z).

Define F1,j = Fj . For each k = 2, ...,m and j ∈ Ĵk, define Fk,j ∈ Φ(Vj) by Fk,j = [0].
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Thus,

F =
m∑
k=1

∑
j∈Ĵk

ϕj(Fk,j) +
m∑
k=1

∑
j∈Ĵk

∑
z∈Zk,j

Dϕj(z) (Lemma 4.2.7 (12))

=
m∑
k=1

∑
j∈Ĵk

(
ϕj(Fk,j) +

∑
z∈Zk,j

Dϕj(z)

)

=
m∑
k=1

∑
j∈Ĵk

(
ϕj(Fk,j) + ϕj

( ∑
z∈Zk,j

Dz
))

=
m∑
k=1

∑
j∈Ĵk

ϕj

(
Fk,j +

∑
z∈Zk,j

Dz
)
.

Since

Fk,j +
∑
z∈Zk,j

Dz → 0

we have the desired result (technically after reordering the sum to group like in-
dices from I and pulling ϕi over the sum once more). QED

Proposition 4.2.20. The quotient convergence structure on a CVS and the final vector
space convergence structure relative to the quotient map coincide.

Proof. Let q : V → W be a linear surjection with V a CVS. Let Wq denote W with
its quotient convergence structure and Wf denote W with the final vector space
convergence structure relative to the quotient map. Suppose we have a filter F →
w in Wq. Recall from Lemma 4.1.10 that this means we have a single v ∈ q−1(w)
and filter G → v so that F ⊇ q(G). An immediate consequence is that

F − w ⊇ q(G)− q(v)

= q(G − v)

where of course G − v → 0. We thus have that F −w → 0 in Wf by continuity of q.
We conclude that F → w in Wf .

For the other direction, let F → w in Wf . We then have that F − w → 0. By
Corollary 4.2.19 we may produce a filter F → 0 in V so that

F − w ⊇ q(F).

Letting v ∈ V with q(v) = w, we recover that

F ⊇ q(F + v)

with F + v → v in V . This is precisely that F → w in Wq by Lemma 4.1.10. QED
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Corollary 4.2.21. Quotients of topological CVSs are topological.

Definition 4.2.22. If {Vi}i∈I is a family of convergence spaces, their coproduct is de-
fined to be

⊕
i∈I Vi endowed with its final vector space convergence structure rel-

ative to the usual embeddings ei : Vi →
⊕

i∈I Vi. Unless otherwise stated,
⊕

i∈I Vi
will always be assumed to carry this convergence structure.

Remark 4.2.23. Similarly to the convergence sum, this is clearly the coproduct in
the category of convergence K-vector spaces.

The last result of this section will be a classification of all finite dimensional Haus-
dorff convergence vector spaces.

Lemma 4.2.24. A filter F on Kn (with its usual topology) converges to v if and only if

F ⊇
n∑
i=1

Dei + v

where ei is the i-th standard basis vector.

Proof. Since Kn is topological, this amounts to proving that for all v ∈ Kn the neigh-
borhood filter for v is

n∑
i=1

Dei + v.

Suppose U is a neighborhood of v ∈ V . We have that U ⊇ Bε(v) for some ε > 0. It
is then not hard to see that

Bε(v) ⊇
n∑
i=1

ε

n
Dei + v

so that

U ∈
n∑
i=1

Dei + v

and

Nv ⊆
n∑
i=1

Dei + v.

Similarly, if ε1, ..., εn > 0, it is not hard to check

n∑
i=1

(−εi, εi)ei + v ⊇ Bε(v).
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where

ε = min
1≤i≤n

εi.

Thus,

n∑
i=1

(−εi, εi)ei + v ∈ Nv,

and

Nv ⊇
n∑
i=1

Dei + v.

We conclude

Nv =
n∑
i=1

Dei + v

as desired. QED

Theorem 4.2.25. If V is an n-dimensional, Hausdorff CVS, then V is isomorphic to Kn.
Further, any bijection f : Kn → V is a homeomorphism.

Proof. Let f : Kn → V be a linear bijection. For each i = 1, ..., n let ei denote the i-th
standard basis vector for Kn and set vi = f(ei). Since V is n-dimensional, we have
that {v1, ..., vn} is a basis for V .

Suppose that v ∈ Kn and that there is a filter F → v. By Lemma 4.2.24 we have
that

F ⊇
n∑
i=1

Dei + v.

Therefore,

f(F) ⊇
n∑
i=1

Dvi + f(v)→ f(v).

Therefore, f(F)→ f(v) and we have that f is continuous.

Let Dn
and Sn denote the closed unit ball and unit sphere in Kn respectively.

We know that Sn is compact and f(Sn) is compact and closed by continuity of
f (Proposition 2.5.16) and Hausdorffness of V (Proposition 2.5.14).

Suppose we have some filter F → 0 in V . We know that DF → 0. We claim
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that we may find F ∈ F and r > 0 so that rDF ∩f(Sn) = ∅. This must be true since
otherwise, we could consider the filter

G = [{U ∩ f(Sn) : U ∈ DF}]

Certainly, G ⊇ DF and f(Sn) ∈ G. Thus, G → 0 and 0 ∈ α(f(Sn)) = f(Sn). This is
impossible since f is a bijection.

Now, choose F ∈ F and r > 0 so that rDF ∩ f(Sn) = ∅ and define K = f(1
r
Dn

).
SinceK is the continuous image of a compact set,K is compact by Proposition 2.5.16.
We claim that F ⊆ K. Otherwise, suppose there is v ∈ F with v /∈ K. Defining
w = f−1(v), we have w /∈ 1

r
Dn

and |w| > 1/r. We then have |rw| > 1 and there is
some λ ∈ K with |λ| < 1 so that λrw ∈ Sn. Then rλv ∈ f(Sn). Since v ∈ F and
|λ| < 1, we have rλv ∈ rDF . This is a contradiction since rDF ∩ f(Sn) = ∅.

Let g : 1
r
Dn → K be the restriction of f to this domain. We have that g is a contin-

uous bijection from a compact Choquet space to a Hausdorff space and is thus a
homeomorphism by Proposition 2.6.36. Let ι : K → V be the inclusion. Consider
the filter on K given by

F|F = [{U ∩ F : U ∈ F}].

Note that if U ∈ F , then U ⊇ F ∩ U ∈ ι(F|F ). Thus, ι(F|F ) ⊇ F and ι(F|F ) → 0.
We conclude that F|F → 0 in the subspace convergence structure on K. Thus, by
continuity of g, we have g−1(F|F )→ 0 in Kn.

Let H ∈ g−1(FF ). There is then U ∈ F so that H ⊇ g−1(U ∩ F ). Since U ∩ F ⊆ K,
we have H ⊇ f−1(U ∩ F ). Since F ∈ F , we have H ∈ f−1(F). Thus,

f−1(F) ⊇ g−1(F|F )

we have f−1(F)→ 0 so that f−1 is continuous. QED

Corollary 4.2.26. If V and W are finite dimensional Hausdorff CVSs, then any linear
map f : V → W is continuous.

Proof. Let f : V → W be a linear map. We have some linear homeomorphisms
ϕ : V → Kn and ψ : W → Km for n = dimV and M = dimW . This gives rise to the
commutative diagram

V W

Kn Km

f

ϕ

ψfϕ−1

ψ−1

We know ψfϕ−1 is continuous since it is a linear map Kn → Km. We conclude that
f is continuous as a composition of linear maps. QED
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Corollary 4.2.27. If V and W are finite dimensional Hausdorff CVSs, then any linear
bijection V → W is a homeomorphism.

Corollary 4.2.28. A linear map from a CVS to K is continuous if and only if its kernel is
closed.

Proof. Fix a CVS V and a linear functional ϕ : V → K.

Suppose ϕ is continuous. Let v ∈ a(kerϕ). We then have a net α → v with α
in kerϕ. Then ϕ(α) → ϕ(v). But ϕ(α) is merely the constant zero net in K which
is Hausdorff. We then have that ϕ(v) = 0 and v ∈ kerϕ. Therefore, the kernel is
closed.

Now, suppose that kerϕ is closed. We have that V/ kerϕ is Hausdorff by Propo-
sition 4.1.13. Further ϕ descends to the quotient, giving an injective map ϕ̃ :
V/ kerϕ → K. Since V/ kerϕ is finite dimensional (specifically at most one di-
mensional), we have that ϕ̃ is continuous. Therefore ϕ = ϕ̃ ◦ q is continuous with
q : V → V/ kerϕ the quotient map. QED

4.3 Locally Convex Convergence Vector Spaces

In this section we will consider locally convex convergence vector spaces, the con-
vergence analogue to locally convex topological vector spaces. Before giving the
definition (Definition 4.3.7) we will define the convex and absolutely convex hulls
of a filter and prove some basic properties.

Definition 4.3.1. If V is a vector space, we define the convex hull of a filter F on V
by

co(F) = [{co(F ) : F ∈ F}],

that is, the filter generated by the convex hulls of the elements of F . Likewise, we
define the absolute convex hull of F by

Γ(F) = [{Γ(F ) : F ∈ F}],

that is, the filter generated by the absolute convex hulls of the elements of F .

Proposition 4.3.2. Fix a vector space V and a filter F on V . If H ∈ co(F), there is
F ∈ F with H ⊇ co(F ). If H ∈ Γ(F), there is F ∈ F with H ⊇ Γ(F ).

Proof. Suppose H ∈ co(F). There are then F1, ..., Fn ∈ F with

H ⊇
n⋂
i=1

co(Fn)

⊇ co

( n⋂
i=1

Fn

)
.
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Since
⋂n
i=1 Fn ∈ F , the result follows.

Next, suppose H ∈ Γ(F). There are then F1, ..., Fn ∈ F with

H ⊇
n⋂
i=1

Γ(Fn)

⊇ Γ

( n⋂
i=1

Fn

)
.

Since
⋂n
i=1 Fn ∈ F , the result follows. QED

Proposition 4.3.3. If V is a vector space and F ∈ Φ(V ), then

F ⊇ co(F) ⊇ Γ(F).

Proof. Suppose H ∈ Γ(F). There is then some F ∈ F so that H ⊇ Γ(F ). Since
Γ(F ) is convex and contains F , we have Γ(F ) ⊇ co(F ). Therefore, H ∈ co(F) and
co(F) ⊇ Γ(F).

Suppose now H ∈ co(F). There is then some F ∈ F so that H ⊇ co(F ) ⊇ F .
Therefore, H ∈ F and F ⊇ co(F). QED

Proposition 4.3.4. If V is a vector space and F ,G ∈ Φ(V ) with F ⊇ G, then co(F) ⊇
co(G) and Γ(F) ⊇ Γ(G).

Proof. Suppose H ∈ co(G). There is then G ∈ G with H ⊇ co(G). But since G ∈ F ,
we have H ∈ co(F . Thus, co(F) ⊇ co(G). The proof of Γ(F) ⊇ Γ(G) is identical.

QED

Proposition 4.3.5. If V and W are vector spaces, f : V → W linear, and F a filter on V ,
then f(co(F)) = co(f(F)) and f(Γ(F)) = Γ(f(F)).

Proof. Suppose H ∈ f(co(F)) is equivalent to the existence of F ∈ F with H ⊇
f(co(F )). Since f(co(F )) = co(f(F )), this is equivalent to H ∈ co(F)). Thus,
f(co(F)) = co(f(F)). The proof of f(Γ(F)) = Γ(f(F)) is identical. QED

Proposition 4.3.6. If V is a vector space and F ,G are filters on V , then co(F + G) =
co(F) + co(G) and Γ(F + G) = Γ(F) + Γ(G)

Proof. Suppose H ∈ co(F + G). There are then F ∈ F and G ∈ G so that H ⊇
co(F +G). Since co(F +G) = co(F )+co(G), this is equivalent toH ∈ co(F)+co(G).
Thus, co(F + G) = co(F) + co(G).

The proof for the absolute convex hull is identical. QED

We can now define locally convex convergence vector spaces.

Definition 4.3.7. A CVS is called locally convex if whenever a filter F → 0 we have
that co(F)→ 0.
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We next justify that this definition does generalize that of locally convex topologi-
cal vector spaces.

Proposition 4.3.8. A TVS V is locally convex if and only C(V ) is a locally convex CVS.

Proof. Let V be a locally convex TVS. Recalling that N0 denotes the neighborhood
filter at 0 in V , we have that co(N0) ⊆ N0 and since V is locally convex, we have
that co(N0) = N0. Now, if F → 0 in C(V ) we have that F ⊇ N0. Then we have that
co(F) ⊇ co(N0) = N0 so that co(F)→ 0. Thus, C(V ) is a locally convex CVS.

Now, suppose that V is a TVS and C(V ) is locally convex. Since N0 → 0, we
have that co(N0) → 0, but then N0 ⊆ co(N0). Thus, any neighborhood N of 0 in V
is an element of co(N0). But then N ⊇ co(N ′) for some N ′ ∈ N0) so that N contains
a convex neighborhood of 0. This means that V is locally convex as a TVS. QED

Proposition 4.3.9. If V is a locally convex CVS than so are its subspaces.

Proof. Let U be a subspace of V and ι : U → V the embedding. Suppose F → 0 in
U . Then ι(F)→ 0 in V . So we have that co(ι(F)→ 0 in V . Since co(ι(F) = ι(coF),
one has co(F)→ 0 in U . Thus, U is locally convex. QED

Proposition 4.3.10. If V is a locally convex CVS then so are its quotients.

Proof. Suppose W is a quotient of V with quotient map q. Suppose F → 0 in W .
By Lemma 4.1.10, there is some filter G on V which converges to x ∈ ker q so that
F ⊇ q(G). We then have that G−x→ 0. It follows that co(G−x)→ 0. By continuity
of q we have that q(co(G − x))→ 0 in W . We then see that

co(F) ⊇ co(q(G))

= co(q(G − x))

= q(co(G − x))

→ 0

so co(F)→ 0 in W . QED

Proposition 4.3.11. Products of locally convex CVSs are locally convex.

Proof. Let {Vi}i∈I be a family of locally convex CVSs and let V =
∏

i∈I Vi. Suppose
F → 0 in V . Then for each i ∈ I we have that πi(F) → 0 in Vi. Since each Vi is
locally convex, we have that

co(πi(F)) = πi(co(F))→ 0

in Vi. As this holds for all i ∈ I , we have that co(F) → 0 in V . Therefore, V is
locally convex. QED

Proposition 4.3.12. Direct sums of locally convex CVSs are locally convex.
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Proof. Let {Vi}i∈I be a family of locally convex CVSs and let V =
⊕

i∈I Vi. Suppose
F → 0 in V . We then have by Corollary 4.2.19 a finite set J ⊆ I and filter Fj → 0
in Xj for each j ∈ J so that

F ⊇
∑
j∈J

ϕj(Fj).

Of course then

co(F) ⊇
∑
j∈J

ϕj(co(Fj)).

and since each co(Fj)→ 0 in Vj by local convexity we have co(F)→ 0 in V . QED

Lemma 4.3.13. If V,W are (convergence) vector spaces, then ev : L(V,W )× V → W is
bilinear.

Proof. Fix v ∈ V . Suppose f, g ∈ L(V,W ) and α ∈ K. Then

ev(f + αg, v) = (f + αg)(v)

= f(v) + αg(v)

= ev(f, v) + α ev(g, v).

Fix f ∈ L(V,W ). Suppose v, w ∈ V and α ∈ K. Then

ev(f, v + αw) = f(v + αw)

= f(v) + αf(w)

= ev(f, v) + α ev(f, w).

QED

Lemma 4.3.14. Suppose V and W are CVSs, F is a filter on L(V,W ), F is a filter on V ,
then

ev(co(F )×F) ⊇ co(ev(F ×F)).

Proof. This is an immediate consequence of Lemma 4.3.13 and Proposition D.1.7.
QED

Proposition 4.3.15. If V and W are CVSs and W is locally convex, then L(V,W ) is
locally convex.

Proof. Suppose F → 0 in L(V,W ). We then have for any v ∈ V and filter F → v
that ev(F ×F)→ 0 in W . We then have that co(ev(F ×F))→ 0 by local convexity
of W . By Lemma 4.3.14, we then have that ev(co(F ) × F) → 0. This shows that
co(F )→ 0 in L(V,W ). QED
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4.4 Locally Convex Topological Modification

In this section, we will describe a method for turning any convergence vector space
into a locally convex topological vector space. This will give rise to a functor and
natural transformation sharing many of the same properties as a strict modifica-
tion of convergence spaces.

Recall that if V is a vector space over K, a seminorm is a function p : V → R
so that for all v, w ∈ V and λ ∈ K we have

1. p(v + w) ≤ p(v) + p(w);

2. p(λv) = |λ|p(v).

Note that a seminorm p must be non-negative since for any v ∈ V one has

0 = p(0)

= p(v − v)

≤ p(v) + p(−v)

= 2p(v).

Definition 4.4.1. If V is a CVS, denote by S(V ) the set of continuous seminorms
p : V → R. For each w ∈ V and p ∈ S(V ), define pw : V → R by pw(v) = p(v − w).
Define the locally convex topological modification of V to be T(W ) where W is the
underlying set of V equipped with the initial convergence structure relative to

SV := {pw : V → R | p ∈ S(V ) and w ∈ V }.

The resulting TVS is denoted `(V ).

Remark 4.4.2. Since R is topological, we have that W is topological. Thus we have
that CT(W ) = W . This means that C`(V ) is V with the initial convergence structure
relative to SV .

Proposition 4.4.3. If V is a CVS, a net α in C`(V ) converges to v ∈ C`(V ) if and only if
for every continuous seminorm p : V → R one has p(α− v)→ 0.

Proof. Given the definition of C`(V ), it suffices to prove sufficiency. Suppose α is a
net in C`(V ) so that for every continuous seminorm p : V → R one has p(α−v)→ 0.
Fix p ∈ S(V ) and w ∈ V . Since

|p(α− w)− p(v − w)| ≤ p(α− v)

by the reverse triangle inequality, one has p(α−w)→ p(v−w). Thus, α→ v. QED

Right now, all we know is that `(V ) is a topological space and a vector space. We
want `(V ) to be a locally convex topological vector space. This will be established
by the next few propositions.
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Proposition 4.4.4. If V is a CVS, then `(V ) is a TVS.

Proof. It suffices to check that C`(V ) is a CVS.

Suppose α and β are nets in C`(V ) with α → v and β → u for some v, u ∈ C`(V ).
Fix a continuous seminorm p ∈ S(V ). Since C`(V ) carries the initial convergence
over SV , we have that p(α− v)→ 0 and p(β− u)→ 0. Thus, p(α+ β− (v+ u))→ 0
since

p(α + β − (v + u)) ≤ p(α− v) + p(β − v).

Thus, by Proposition 4.4.3, we have that α+ β → v + u. Therefore, vector addition
+ : C`(V )× C`(V )→ C`(V ) is continuous.

Now, fix nets δ in K and α in C`(V ) so that δ → λ for some scalar λ ∈ K and
α→ v for some v ∈ C`(V ). Fix continuous seminorm p ∈ S(V ). Let ε > 0.

Since δ → λ, we may find i0 ∈ dom δ so that for all i ≥ i0 one has{
|δi − λ| < ε/(2p(v)) p(v) 6= 0

|δi − λ| < 1 p(v) = 0

Note that for i ≥ i0 on must also have |δi| < M for some M > 0. Since α → v, one
has p(α − v) → 0. Thus, there is some j0 ∈ domα so that for all j ∈ domα with
j ≥ j0 one has p(αj − v) < ε/(2M).

With this setup, one has for all (i, j) ≥ (i0, j0), and so

p(δiαj − λv) = p(δiαj − δiv + δiv − λv)

≤ p(δiαj − δiv) + p(δiv − λv)

= |δi|p(αj − v) + |δi − λ|p(v)

< ε/2 + ε/2

= ε.

Thus, p(δα − λv) → 0. As this holds for all p ∈ S(V ), we have that δα → λv by
Proposition 4.4.3. Thus, scalar multiplication · : K× C`(V )→ C`(V ) is continuous.
We may now conclude that C`(V ) is a CVS and `(V ) is a TVS. QED

Proposition 4.4.5. If V is a CVS, then `(V ) is locally convex.

Proof. For each continuous seminorm p : V → R and w ∈ `(V ) and ε > 0, define
Bp(w, ε) ⊆ `(V ) by

Bp(w, ε) = {v ∈ `(V ) : p(v − w) < ε}
= p−1

w (−ε, ε).
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Since each Bp(w, ε) is the preimage of an open set under a continuous map, we
have that each Bp(w, ε) is open. Further, note that if u, v ∈ Bp(w, ε) and λ ∈ [0, 1],
then

p(λv + (1− λ)u− w) = p(λv + (1− λ)u− λw − (1− λ)w)

= p(λ(v − w) + (1− λ)(u− w))

≤ λp(v − w) + (1− λ)p(u− w)

< ε

so that Bp(w, ε) is convex.

Since `(V ) carries the initial topology over SV , a generic sub-basic open set of `(V )
containing 0 is of the form p−1

w (U) for p ∈ S(V ) and w ∈ V and U ⊆ R open with
0 ∈ p−1

w (U). Since 0 ∈ p−1
w (U), one has that p(w) ∈ U . Since U is open, there is some

ε > 0 so that (p(w)− ε, p(w) + ε) ⊆ U . Suppose v ∈ Bp(0, ε). Then

|pw(v)− p(w)| = |p(v − w)− p(−w)|
≤ p(v − w + w)

= p(v)

< ε

and pw(v) ∈ U . Thus,

0 ∈ Bp(0, ε) ⊆ p−1
w (U).

Thus, any open set in `(V ) containing 0 contains an intersection of balls of the form
Bp(0, ε) which is convex. Therefore, `(V ) has a neighborhood base at 0 consisting
of convex sets. QED

We have now shown that if V is a convergence vector space, then C`(V ) is a locally
convex convergence vector space.

Definition 4.4.6. If V is a CVS, define ιV : V → C`(V ) by x 7→ x. If V,W are CVSs
and ϕ : V → W is a linear map, define C`(ϕ) : C`(V )→ C`(W ) by x 7→ ϕ(x).

Denote by CVSK the categories of convergence vector spaces over K and K-linear
maps. The next result establishes that C` : CVSK → CVSK is a functor and ι :
idCVS → C` is a natural transformation.

Theorem 4.4.7. Suppose V,W are CVSs.

1. The map ιV : V → C`(V ) is continuous and a homeomorphism if and only if V is
locally convex and topological.

2. If ϕ : V → W is continuous and linear, then C`(ϕ) : C`(V ) → C`(W ) is continu-
ous.
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3. If U is a locally convex topological CVS and ϕ : V → U is linear, then the following
are equivalent.

(i) ϕ is continuous.

(ii) C`(ϕ) : C`(V )→ C`(U) is continuous.

Proof. Fix convergence vector spaces V and W .

1. If p : V → R is a continuous seminorm and w ∈ V , then pw : V → R is
continuous and

V C`(V )

R

ιV

pw
pw

commutes. Thus, by the universal property of the initial convergence struc-
ture, iV is continuous. Further, if ιV is a homeomorphism, then V and C`(V )
have the same converging filters and so V is locally convex and topological.

Suppose V is locally convex and topological. Suppose α is a net in C`(V )
with α → 0 in C`(V ). Then by Proposition 4.4.3 we have for all continuous
seminorms p : V → R we have p(α) → 0. Suppose A is a neighborhood of 0
in V . By Proposition D.3.2, we may assume A is absolutely convex. Then by
Proposition D.2.4 and Proposition D.2.7 we have that the Minkowski semi-
norm pA : V → R given by

pA(v) = inf{r > 0 : v ∈ rA}

is continuous. Thus, pA(α)→ 0. Thus, there is some i0 ∈ domα so that for all
i ∈ domα with i ≥ i0 we have pA(αi) < 1 so that αi ∈ rA for some 1 > r > 0.
Since A is balanced, αi ∈ U and αi ∈ev A. We conclude that α→ 0 in V . Since
i−1
V : C`(V )→ V is linear and we have just shown it to be continuous at 0, we

have i−1
V is continuous. Thus, iV is a homeomorphism.

2. Suppose α is a net C`(V ) converging to 0. Suppose p : W → R is a contin-
uous seminorm. Then since ϕ is continuous, p ◦ ϕ : V → R is a continuous
seminorm. So, by Proposition 4.4.3, we have p ◦ϕ(α)→ 0. Thus, p(ϕ(α))→ 0
and ϕ(α) → 0 in C`(V ) by Proposition 4.4.3. Therefore, C`(ϕ) is continuous
at 0 and so continuous everywhere.

3. Note that since U is locally convex and topological, ιU is a homeomorphism
by (1). If ϕ is continuous, then C`(ϕ) is continuous by (2). If on the other hand
C`(ϕ) is continuous, then

ϕ = ι−1
U ◦ C`(ϕ) ◦ ιV

is continuous as a composition of continuous functions.
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QED

Corollary 4.4.8. The assignment C` : CVSK → CVSK is a functor and ι : idCVS → C` is
a natural transformation.

From (3) of Theorem 4.4.7, we have the following:

Corollary 4.4.9. If V is a convergence vector space and U is a locally convex topological
convergence vector space, then as sets

L(V,W ) = L(C`(V ),W )

and in particular

L(V ) = L(C`(V )).

Proposition 4.4.10. If V is a vector space and {Vi}i∈I is a family of locally convex topo-
logical convergence vector spaces and V is given the initial convergence structure relative
to a family of linear maps {ϕi : V → Vi} then V is a locally convex topological CVS.

Proof. Theorem 4.4.7 tells us that it is enough to show ι−1
V : Cτ(V ) → V is con-

tinuous. By the universal property of the initial convergence structure this is con-
tinuous if and only if ϕi ◦ ι−1

V : Cτ(V ) → C(Vi) is continuous for each i ∈ I . The
continuity of each ϕi ◦ ι−1

V follows from the commutativity of

V Vi

C`(V ) C`(Vi)

ϕi

ι−1
V

C`(ϕi)

ι−1
Vi

and the continuity of ι−1
Vi

. We conclude that ι−1
V is continuous and that V is a locally

convex topological CVS. QED

Proposition 4.4.11. Suppose V is a vector space equipped with the final vector space
convergence structure relative to linear maps {ϕi : Vi → V : i ∈ I} from convergence
vector spaces Vi. IfU is a locally convex topological CVS, then a linear map f : C`(V )→ U
is continuous if and only if f ◦ C`(ϕi) : C`(Vi)→ U is continuous for each i ∈ I .

Proof. If f is continuous, no work is required. Now, suppose f ◦C`(ϕi) : C`(Vi)→ U
is continuous for each i ∈ I . Define f ′ : V → U by f ′ = f ◦ iV . We then have the
commutative diagram

Vi V

C`(Vi) C`(V )

U

ιVi

ϕi

ιV
f ′

C`(ϕi)
f
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for each i ∈ I . Observe that from the diagram we have

f ′ ◦ ϕi = f ◦ C`(ϕi) ◦ ιVi
which is continuous. Thus, by the universal property of the final vector space con-
vergence structure (Proposition 4.2.13), we have that f ′ is continuous. Observe that
C`(f ′) = ιU ◦ f is continuous since f ′ is. Since U is locally convex and topologi-
cal, we have that ι−1

U is continuous and so f = ι−1
U ◦ C`(f ′) = f is continuous as

desired. QED

Definition 4.4.12. Suppose X is a convergence space and f : X → K is some
function. Define the support of f to be

supp(f) = cl({x ∈ X : f(x) 6= 0}).

Theorem 4.4.13. If X is a c-embedded space, then for each continuous seminorm p :
Cc(X)→ R there is some M > 0 and compact K ⊆ X so that

1. p(f) ≤M supK |f | for all f ∈ Cc(X);

2. for each x ∈ K and σ-open (that is, weakly open) U ⊆ X with x ∈ U there is
f ∈ Cc(X) so that supp(f) ⊆ U and p(f) 6= 0.

Proof. Fix a continuous seminorm p : Cc(X)→ R.

First, suppose X is a compact topological space. Call a set U ⊆ X null when
for each f ∈ C(X) with supp(f) ⊆ U we have p(f) = 0. Define

N(p) =
⋃
{U ⊆ X : U open and null}.

We claim that N(p) is null. If there are no open null sets, then N(p) = ∅ which is
certainly null. Suppose there are open null sets. Suppose f ∈ C(X) with supp(f) ⊆
N(p). Since supp(f) is compact, being a closed subset of a compact space, we have
that supp(f) ⊆ U1 ∪U2 ∪ · · · ∪Un for some collection U1, U2, ..., Un of open null sets.
Let {u1, ..., un} be a partition of unity subordinate to6 {U1, ..., Un}. We then have
that

p(f) = p(u1f + u2f + · · ·+ unf)

≤ p(u1f) + p(u2f) + · · ·+ p(unf)

= 0

since each Uk is null and supp(uk) ⊆ Uk. We thus conclude that N(p) is null. Set
K = X r N(p). If K = ∅, then (2) is vacuously satisfied. Else, suppose x ∈ K
and U ⊆ X is a weakly open neighborhood of x. Since U is open and contains x,
it cannot be null. Thus, there is some f ∈ Cc(X) with supp(f) ⊆ U and p(f) 6= 0.
This is exactly property (2).

We now proceed to show property (1). First, we claim that
6See Appendix C.1 for details.
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(a) there is some c > 0 so that p(f) ≤ c whenever sup |f | ≤ 1;

(b) if f ∈ C(X) and f(K) = {0} then p(f) = 0.

Consider the directed set

I = {(f, ε) : ε ∈ R+ and f ∈ C(X) r {0}with sup |f | ≤ ε}

ordered by (f, ε) ≥ (g, δ) when ε ≤ δ. Let Λ : I → Cc(X) be a net with Λ(f, ε) = f .
Certainly we have Λ → 0 in Cc(X). Therefore, p(Λ) → 0. Therefore, we may find
ε > 0 so that whenever sup |f | ≤ ε we have p(f) ≤ 1. Thus, whenever sup |f | ≤ 1
we have p(f) ≤ 1

ε
. This is (a).

Now for (b), suppose f ∈ C(X) and f(K) = {0}. For any ε > 0 there is a function
g ∈ C(X) so that g(x) = f(x) for all x ∈ X with |f(x)| ≤ ε and |g(x)| = ε oth-
erwise. We next see that supp(f − g) ⊆ X r K (any converging net α on which
f − g is non-zero must converge to x with |f(x)| ≥ ε and thus x /∈ K). We have
supp(f − g) ⊆ N(p), so p(f − g) = 0. Lastly, have

p(f) = p(f − g + g)

≤ p(f − g) + p(g)

< εc (by (a) since sup |g| ≤ ε)

for all ε > 0 so that p(f) = 0. This is (b).

Let f ∈ C(X). If supK |f | = 0, we have just shown that p(f) = 0. Else, we have that

sup
K

∣∣∣∣ f

supk |f |

∣∣∣∣ = 1

and so by (a) p(f) ≤ c · supk |f |. This is (1).

Having shown the desired properties when X is a compact Hausdorff space, we
now consider the case wherein X is a Tychonoff space. Write βX for the Stone-
C̆ech compactification of X and ηX : X → βX for the continuous embedding of X
into a dense subset of its compactification which exists sinceX is Tychonoff. Using
this, we will think of X as a subspace of βX . Note that p̂ = p ◦ η∗X : Cc(βX)→ R is
a continuous seminorm.

By our first case, there is some M > 0 and compact K ⊆ βX so that

• p̂(f) ≤M supK |f | for all f ∈ Cc(βX);

• for each x ∈ K and σ-open (that is, weakly open) U ⊆ βX with x ∈ U there
is f ∈ Cc(βX) so that supp(f) ⊆ U and p̂(f) 6= 0.
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We claim that K ⊆ X .

Suppose otherwise that there is some x0 ∈ K rX . Let Uσ0 denote the set of weakly
open subsets of βX containing x0, define SU = {f ∈ C(βX) : f(βX r U) = {0}}.
Define the directed set

I = {(f |X , U) : f ∈ SU , U ∈ Uσ0 }

ordered by reverse inclusion on its second coordinate. Let Λ : I → C(X) be the
net given by Λ(f |X , U) = f |X . Suppose x ∈ X and there is a net α in X with
α → x. Since βX is c-embedded, we have that it is functionally Hausdorff and
since x 6= x0, we may separate these points by weakly open sets. Thus, we have
α ∈ev βX r U for some weakly open U 3 x0. Thus, Λ(α) is eventually 0. So, Λ→ 0
in C(X) and p(Λ)→ 0 in R.

Thus, we may find a weakly open set U containing x0 so that p(f |X) ∈ [0, 1] when-
ever f ∈ SU . Note that if f ∈ SU so are any of its scalar multiples. Thus, p(f |X) = 0.
By the first part, we know there is some f ∈ C(βX) so that with supp(f) ⊆ U and
p̂(f) 6= 0. Since supp(f) ⊆ U , we have f ∈ SU . Thus,

0 6= p̂(f) = p ◦ η∗X(f) = p(f |X) = 0.

This contradiction proves that K ⊆ X .

Now, suppose x ∈ K and that U ⊆ X is a weakly open neighborhood of x. We
may then find an index set A and for each α ∈ A a natural number Nα, and for
each α and i = 1, ..., Nα a continuous function fα,i : X → R and an open set V ⊆ R
so that

U =
⋃
α∈A

Nα⋂
i=1

f−1
α,i (Vα,i).

For each α, i we may find index set Cα,i and for each γ ∈ Cα,i real numbers rα,i,γ
and zα,i,γ so that

Vα,i =
⋃

γ∈Cα,i

Brα,i,γ (zα,i,γ).

Putting all of this together,

U =
⋃
α∈A

Nα⋂
i=1

⋃
γ∈Cα,i

f−1
α,i (Brα,i,γ (zα,i,γ)).

Now, for each triple α, i, γ we may find a bounded continuous f ∗α,i,γ : X → R so
that when x ∈ X is such that fα,i(x) ∈ Brα,i,γ (zα,i,γ) we have f ∗α,iγ(x) = fα,i(x) and
so that when fα,i(x) /∈ Brα,i,γ (zα,iγ) we have f ∗α,i,γ(x) /∈ Brα,i,γ (zα,i,γ). Thus,

U =
⋃
α∈A

Nα⋂
i=1

⋃
γ∈Cα,i

f ∗−1
α,i,γ(Brα,i,γ (zα,i,γ)).
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For each f ∗α,i,γ , we may find continuous f̂ ∗α,i,γ : βX → R so that

X R

βX

ηX

f∗α,i,γ

f̂∗α,i,γ

commutes. Define weakly open Û ⊆ βX by

Û =
⋃
α∈A

Nα⋂
i=1

⋃
γ∈Cα,i

f̂ ∗
−1

α,i,γ(Brα,i,γ (zα,i,γ)).

Observe that U = X ∩ Û . There is some f ∈ C(βX) so that supp(f) ⊆ Û and
p̂(f) 6= 0. We then have f |X ∈ C(X) and supp(f |X) ⊆ U and p(f |X) 6= 0. This is
property (2) in the case of X Tychnoff.

We now prove property (1). Suppose f ∈ C(X) is bounded. Note that since f
is bounded, it has image contained in a compact set. We factor it through βX
obtaining the commutative diagram

X R

βX

ηX

f

f̂

We then have

p(f) = p̂(f̂) ≤M sup
K
|f̂ | = M sup

K
|f |

since K ⊆ X . For f unbounded, we approximate f by a net Λ of bounded func-
tions. The above inequality holds as p is continuous and supK |Λ| is eventually
constant at value supK |f | due to compactness of K. This is property (1). This com-
pletes the proof in the case that X is Tychonoff.

We finally consider the full generality of X a c-embedded convergence space. We
apply the last case to tych(X) - the Tychonoff modification of X . Recall that the
quotient map q : X → tych(X) induces a continuous mapping q∗∗ : CC(X) →
CC(tych(X)). Observe, q∗∗(p) : C(tych(X)) → R by q∗∗(p)(f) = p(f ◦ q) so that
q∗∗(p) is a continuous seminorm. Thus, by the previous case, there is some M > 0
and compact K ⊆ tych(X) so that

• p(f ◦ q) ≤M supK |f | for all f ∈ Cc(tych(X));

• for each x ∈ K and σ-open (that is, weakly open) U ⊆ tych(X) with x ∈ U
there is f ∈ Cc(tych(X)) so that supp(f) ⊆ U and p(f ◦ q) 6= 0.
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We observe that each member of C(X) is of the form f ◦q for some f ∈ C(tych(X)).
Further, we observe that

sup
K
|f | = sup

q−1(K)

|f ◦ q|.

Further, if U is weakly open in tych(X), then q−1(U) is weakly open in X and
supp(f ◦ q) ⊆ q−1(U). Thus it, only remains to show that q−1(K) is compact in X .

We will show that every covering system for q−1(K) in X has a finite subcover.
Suppose C is a covering system for q−1(K). Suppose F is a filter with F → x in X
for some x ∈ q−1(K). Since X is functionally regular as it is c-embedded, we have
that Fσ → x. There is then some AF ∈ F and CF ∈ C so that AF

σ ⊆ CF .

Now, note that since tych(X) is Hausdorff andK is compact,K is closed in tych(X).
Thus, we have that q−1(K) is closed in X as well. Thus, for any filter F on X con-
verging in X r q−1(K), there is some AF ∈ F so that AF

σ ⊆ X r q−1(K).

Define the filter

F = [{T (AF , {0}) : F ∈ Φ(X) converges }]

recalling that

T (AF , {0}) = {f ∈ C(X) : f(AF) ⊆ {0}}.

We note that F is well defined since each element of its filter base contains at
least the constant map at 0. Further, one has that F → 0 in C(X) since for any
converging F ∈ Φ(X) we have that

F (F) 3 T (AF , {0})(AF) = {0}.

We then have that p(F ) → 0 by continuity. There is then some E ∈ F so that
p(E) ⊆ [0, 1]. Without loss of generality, E ∈ F is a finite intersection of elements
of the filter-base of F which means

E = T (AF1 ∪ AF2 ∪ · · · ∪ AFn , {0})

for F1, ...,Fn filters converging in X . Observe that E is closed under scalar multi-
plication. It must then be that p(E) = {0}.

Suppose for the sake of contradiction that

x ∈ q−1(K) r A

where

A = AF1

σ ∪ AF2

σ ∪ · · · ∪ AFn
σ
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which is weakly closed. Recall that any weakly closed set may be written as an
arbitrary intersection of finite unions of preimages of closed sets. That is,

A =
⋂
α

N⋃
i=1

f−1
α,i (Tα.i)

where each fα,i : X → K continuous and Tα,i closed. Define

B =
⋂
α

N⋃
i=1

σ(fα,i)
−1(Tα.i)

which is weakly closed in tych(X). Observe that q(x) ∈ B if and only if x ∈ A.
Thus, q(x) ∈ K rB. There is then some f ∈ C(X).

supp(f̃) ⊆ tych(X) rB

and p(f) 6= 0. But then f̃ = {0} from which it follows that f(A) = {0} and f ∈ E
so that p(f) = 0. This is a contradiction. Thus,

{CF1 , CF2 , ..., CFn}

is a finite subset of C covering q−1(K). We conclude that q−1(K) is compact as
desired to finish the proof. QED

4.5 Dual Spaces

In this section, we investigate the dual space of a convergence vector space.

Definition 4.5.1. If V is a convergence vector space, the dual of V is L(V ), the space
of continuous linear maps from V to the ground field K. Unless otherwise speci-
fied, L(V ) is assumed to carry the subspace convergence structure fromCc(V,K). If
we wish to emphasize that the dual carries the continuous convergence structure,
we will write Lc(V ) instead of L(V ).

Recall that if X and Y are convergence spaces and x ∈ X , there is an evaluation
at x map evx : C(X, Y ) → Y given by f 7→ f(x). Such evaluations induce another
convergence structure on L(V ).

Definition 4.5.2. If V is a convergence space, the weak* convergence structure on
L(V ) is the initial convergence structure relative to the family {evv : L(V ) →
K | v ∈ V }. We denote LV with the thereby induced convergence structure by
Lσ(V ).

Since K is topological, we have that Lσ(V ) is topological. Its corresponding topol-
ogy is the usual weak*-topology on L(V ). Further, since each evv map is linear,
Lσ(V ) is a convergence vector space.
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Notation 4.5.3. If F is a filter on L(V ) and v ∈ V , define F (v) = evv(F ). If Λ is a
net in L(V ) and v ∈ V , define Λ(v) = evv(Λ).

Remark 4.5.4. Let F and Λ respectively be a filter and net in L(V ) for some vector
space V . If v ∈ V , then

1. E(Λ(v)) = E(Λ)(v);

2. η(F (v)) ∼ η(F )(v).

Proposition 4.5.5. A net Λ on Lσ(V ) converges to 0 if and only if for every v ∈ V we
have Λ(v)→ 0.
Proof. If Λ → 0, then Λ(v) → 0 since evv : Lσ(V ) → K is continuous. Conversely,
suppose Λ(v)→ 0 for each v ∈ V . Then Λ→ 0 since Lσ(V ) is initial with respect to
the evaluation maps evv. QED

Corollary 4.5.6. A filter F on Lσ(V ) converges to 0 if and only if for every v ∈ V we
have F (v)→ 0.
Corollary 4.5.7. The “identity” map Lc(V )→ Lσ(V ) is continuous.
Proof. Suppose we have a net Λ → 0 in Lc(V ). Let v ∈ V . Consider the net α :
{v} → V given by α(v) = v. Certainly α → v. We have that Λ(α) → 0 in K. We
see that ev(Λ, α) ∼ Λ(v). Thus, Λ(v) → 0 in K. We conclude that Λ → 0 in Lσ(V ).
Thus, the “identity” is continuous at 0 and therefore continuous. QED

This last result tells us that convergence in the continuous convergence structure
is stronger than the pointwise convergence of the weak* structure.

With additional information, it is possible to use weak* convergence to obtain con-
vergence in Lc(V ). We will need to introduce a definition and prove an auxiliary
lemma to show this.

Definition 4.5.8. If V is a vector space, the polar of a subset U ⊆ V is

U◦ = {ϕ ∈ L(V ) : ∀u ∈ U |ϕ(u)| ≤ 1}.
Lemma 4.5.9. If F is a filter on L(V ) and G a filter on V and v ∈ V , then

ev(F × G) ⊇ ev(F × (G − v)) + F (v).

or in alternative notation

F (G) ⊇ F (G − v) + F (v).

Proof. Suppose H ∈ F (G−v)+F (v). There are then F1, F2 ∈ F and G ∈ G so that
H ⊇ F1(G− v) + F2(v). We thus have

H ⊇ F1(G− v) + F2(v)

⊇ (F1 ∩ F2)(G− v) + (F1 ∩ F2)(v)

⊇ (F1 ∩ F2)(G− v + v)

= (F1 ∩ F2)(G)

∈ F (G)

which implies that H ∈ F (G) as desired. QED
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We can now give the conditions under which weak* convergence implies conver-
gence in Lc(V ).

Proposition 4.5.10. Let V be a CVS. A filter F converges in Lc(V ) if and only if it
converges in Lσ(V ) and for every filter G → 0 in V there is G ∈ G so that G◦ ∈ F .

Proof. Since the “identity” Lc(V ) → Lσ(V ) is continuous, we have that any filter
F converging in Lc(V ) converges in Lσ(V ). It remains to show the condition on
polars. This may be rephrased as for every net α → 0 in V and any net Λ → ϕ in
Lc(V ) we have some U which eventually contains α and Λ ∈ev U

◦. So let α : A→ V
and Λ : L → L(V ) be such nets. Suppose for the sake of contradiction that the
desired condition fails. That is, for each U in the eventuality filter of α we have
Λ 6∈ev U

◦. Thus, for every a ∈ A we have that Λ 6∈ev (Taα)◦ where Taα is the tail

Taα = {αi : i ∈ A and ≥ a}.

Thus, for every a ∈ A and `0 ∈ L there is ` ≥ `0 so that |Λ`(αa)| > 1. But then it
is clearly the case that Λ(α) 6∈ev D. But then Λ(α) 6→ 0 in K which contradicts the
convergence of Λ in Lc(V ). Thus, we have the desired condition on polars.

Conversely, suppose that we have a filter F → ϕ in Lσ(V ) and for every filter
G → 0 in V there is G ∈ G so that G◦ ∈ F . We wish to show that F → ϕ in Lc(V ).
It suffices to show that for all v ∈ V and filters G → v we have F (G) → ϕ(v).
Fix such a v ∈ V and filter G on V . Fix ε > 0. We have that 1

ε
(G − v) → 0. We

then have some U ∈ 1
ε
(G − v) so that U◦ ∈ F . We then have εU ∈ (G − v) and

ev(U◦ × εU) ∈ F (G − v). Further, ev(U◦ × εU) ⊆ εD. Therefore, εD ∈ F (G − v). As
this holds for each ε > 0 we have F (G − v)→ 0 in K. We conclude that since

F (G) ⊇ F (G − v) + F (v).

by Lemma 4.5.9 and F (v) → ϕ(v) since F → ϕ in Lσ(V ) it must be the case that
F (G)→ ϕ(v) as desired. QED

Corollary 4.5.11. A filter F → 0 in Lc(V ) if and only if it contains the polar of each
finite subset of V and for every filter G → 0 in V there is G ∈ G so that G◦ ∈ F .

Proof. We need only check that containment of the polar of a finite set is equivalent
to convergence to 0 in Lσ(V ). Thus, let Λ be a net in Lc(V ) which converges to 0.
Pick F ⊆ V finite. We have that Λ(v) → 0 for each v ∈ F . We thus have that
Λ(v) ∈ev D for each v ∈ F . It is then clear that Λ ∈ev F

◦ by taking the maximum
required index.

Conversely, assume that Λ ∈ev F
◦ for each finite F ⊆ V . Particularly, given any

v ∈ V and ε > 0 we have Λ ∈ev {(1/ε)v}0. Thus, Λ(v) ∈ev εD and we conclude that
Λ(v)→ 0 for each v ∈ V . This means that Λ→ 0 in Lσ(V ). QED

Definition 4.5.12. If V is a normed space, L(V ) can be made into a normed space
with the operator norm

||ϕ|| = sup{|ϕ(v)| : ||v|| ≤ 1}
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for all v ∈ V . We denote L(V ) equipped with the corresponding convergence
vector space structure as Lop(V ) and denote convergence in this setting by→op.

Remark 4.5.13. If V is a normed space and F and Λ are a filter and net respectively
on L(V ), then

1. F →op 0 if and only if ||F || → 0 in R;

2. Λ→op 0 if and only if ||Λ|| → 0 in R.

Remark 4.5.14. If V is a normed space, it is well known that the identity Lop(V ) →
Lσ(V ) is continuous.

Proposition 4.5.15. If V is a normed space, the identity map Lop(V )→ Lc(V ) is contin-
uous.

Proof. Since the map in question is a linear map between convergence vector spaces,
it suffices to show that it is continuous at 0. Fix a filter F on L(V ) so that F →op 0.
Suppose G is a filter on V with G → 0. From this it follows that D ∈ ||G|| and that
there is some G ∈ G so that ||G|| ⊆ D. Fix ε > 0. Since F →op 0, we have that
εD ∈ ||F ||. There is thus F ∈ F so that ||F || ⊆ εD. Thus, we have F (G) ⊆ εD and
F (G) ∈ F (G) so that εD ∈ F (G). As this holds for all ε > 0, we have established
F (G)→ 0.

Now, if H is a filter on V and H → v for some v ∈ V , we have that H − v → 0. By
Lemma 4.5.9, there holds

F (H) ⊇ F (H− v) + F (v).

By the first part of this proof, F (H−v)→ 0 and by Remark 4.5.14 F (v)→ 0. Thus,
F (H) → 0. As this holds for all converging filters H on V , we have that F → 0.
This establishes the desired continuity. QED

We recall that if f : X → Y is a continuous mapping of convergence spaces, then
there is a continuous map f ∗ : C(Y ) → C(X). A similar construction is available
for dual spaces.

Definition 4.5.16. Let V,W be CVSs and f : V → W be a continuous linear map.
Then map

f ′ : L(W )→ L(V )

given by f ′(ϕ) = ϕ ◦ f is called the adjoint mapping of f .

Proposition 4.5.17. Let V,W be CVSs and f : V → W be a continuous linear map.

1. Then f ′ : Lc(W )→ Lc(V ) is linear and continuous.

2. ker(f ′) = f(V )⊥.
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3. f ′ is an injection if and only if f(V ) is dense in C`(W ).

4. (g ◦ f)′ = f ′ ◦ g′ and (idV )′ = idL(V ).

Proof. (1) To show f ′ is continuous, it suffices by Corollary 3.2.11 to show that its
transpose T1(f ′) continuous. Continuity of the transpose follows from commuta-
tivity of

Lc(W )× V

Lc(W )×W K

id×f T1(f ′)

ev

To see that f ′ is linear, let ϕ, ψ ∈ L(W ) and α, β ∈ K. We see that

f ′(αϕ+ βψ) = (αϕ+ βψ) ◦ f
= α(ϕ ◦ f) + β(ψ ◦ f)

= αf ′(ϕ) + βf ′(ψ).

(2) Suppose ϕ ∈ ker(f ′). Let v ∈ V . We see that ϕ(f(v)) = f ′(ϕ)(v) = 0 so that
ϕ ∈ f(V )⊥. Now, suppose that ϕ ∈ f(V )⊥. We see that f ′(ϕ)(v) = 0 for all v ∈ V ,
so ϕ ∈ ker(f ′). Thus, ker(f ′) = f(V )⊥ as desired.

(3) Suppose f(V ) is dense in C`(W ). Suppose ϕ ∈ L(W ) so that f ′(ϕ) = 0. Let
w ∈ W . Since f(V ) is dense in C`(W ), we have some net α in V so that f(α)→ w in
`(W ). Recall that by Corollary 4.4.9 we know C`(W ) and W have the same linear
functionals, so ϕ is continuous as a map out of C`(W ). Therefore, ϕ ◦ f(α)→ ϕ(w).
Since f ′(ϕ) = 0, we have that the constant 0 net in K converges to ϕ(w). Thus,
ϕ(w) = 0. It is then the case that ϕ = 0 and we have that f ′ is an injection.

Now, for the converse, suppose that f ′ is an injection. We then have by (2) that
f(V )⊥ = {0} and thus that (f(V )⊥)⊥ = W . But we also have by Proposition D.4.14
that (f(V )⊥)⊥ = f(V ) where the closure is taken in `(V ). The result follows.

(4) is a straightforward computation. QED

Remark 4.5.18. It follows from (1) and (4) that the assignments V 7→ Lc(V ) and
f 7→ f ′ give a contravariant functor from the category of convergence K-vector
space to itself.

We will next see how the dual space interacts with various vector space construc-
tions, e.g. the final vector space convergence structure, products, and coproducts.

Theorem 4.5.19. If V is a CVS carrying the final CVS structure relative to a family
{ϕi : Vi → V }i∈I of linear maps so that V is the span of

⋃
i∈I ϕi(Vi), then Lc(V ) carries

the initial convergence structure relative to the family {ϕ′i : L(V ) 7→ L(Vi)}i∈I .



4.5. Dual Spaces 127

Proof. Fix f ∈ Lc(V ). We must show that a filter F converges to f if and only if
ϕ′i(F ) → ϕ′i(f) for all i ∈ I . Since each ϕi is continuous and linear, we have that
each ϕ′i is as well by Proposition 4.5.17. Thus, if a filter F converges to f in Lc(V ),
then it certainly must be that ϕ′i(F )→ ϕ′i(f) for all i ∈ I .

We now consider the converse. Suppose ϕ′i(F ) → ϕ′i(f) for all i ∈ I . To show
that F − f → 0, we will show that F − f contains the polar of each finite subset of
V and for every filter G → 0 in V there is G ∈ G so that G◦ ∈ F − f . This suffices
due to Corollary 4.5.11.

Let N = {x(1), x(2), ..., x(n)} ⊆ V . For each i ∈ I and k = 1, ..., n, we may find
v

(k)
i ∈ Vi only finitely many of which are non-zero so that x(k) =

∑
i∈I ϕi(v

(k)
i ) since

V is the span of
⋃
i∈I ϕi(Vi). Let M ∈ Z+ be larger than the number of non-zero

terms appearing in these sums. Fixing i ∈ I , since ϕ′i(F − f) → 0, we have that
ϕ′i(F − f) contains the polar of Ni = {Mv

(1)
i ,Mv

(2)
i , ...,Mv

(n)
i } by Corollary 4.5.11.

There is thus some Fi ∈ F − f so that ϕ′i(Fi) ⊆ N◦i . Observe that for all but finitely
many i ∈ I , we have Ni = {0} so that N◦i = L(Vi) in the case that Ni = {0}. In this
case, we choose Fi = L(V ). Thus, F =

⋂
i∈I Fi is (equal to) a finite intersection of

elements of F − f and we may conclude F ∈ F − f . We now claim that F ⊆ N◦.
Let k = 1, ..., n and h ∈ F . We have that

h(x(k)) =
∑
i∈I

h ◦ ϕi(v(k)
i )

=
∑
i∈I

ϕ′i(h)(v
(k)
i ).

We thus have that

|h(x(k))| ≤
∑
i∈I

|ϕ′i(h)(v
(k)
i )|

=
∑
i∈I

(1/M)|ϕ′i(h)(Mv
(k)
i )|

<
∑
i∈I∗

1/M (with I∗ indexing the non-zero summands)

≤M(1/M)

= 1.

Therefore, F ⊆ N◦ and N◦ ∈ F − f .

Now, let G → 0 in V . By Corollary 4.2.19 we may find finitely many indices J ⊆ I
and for each j ∈ J a filter Gj converging to 0 in Vj so that

G ⊇
∑
j∈J

ϕj(Gj).
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For each j ∈ J , we have that ϕ′j(F − f) → 0. Thus, by Corollary 4.5.11, since
|J |Gj → 0, there is Gj ∈ Gj so that (|J |Gj)

◦ ∈ ϕ′j(F − f). There is thus some
Fj ∈ F−f so that ϕ′j(Fj) ⊆ (|J |Gj)

◦. Let F =
⋂
j∈J Fj and letG =

∑
j∈J ϕj(Gj) ∈ G.

Let h ∈ F and x ∈ G. For each j ∈ J , we may find vj ∈ Gj so that x =
∑

j∈J ϕj(vj).
We then have

|h(x)| ≤
∑
j∈J

|h ◦ ϕj(vj)|

=
∑
j∈J

(1/|J |)|h ◦ ϕj(|J |vj)|

=
∑
j∈J

(1/|J |)|ϕ′j(h)(|J |vj)|

< 1.

Therefore, h ∈ G◦ so that F ⊆ G◦. Therefore, G◦ ∈ F − f .

We now may conclude that F − f → 0 in Lc(V ) as desired. QED

Corollary 4.5.20. If V and W are CVSs π : V → W is a quotient map, then π′ :
Lc(W )→ Lc(V ) is an embedding onto (kerπ)⊥.

Proof. We first show that π′ is an injection and that π′−1 : π′(Lc(W )) → Lc(W ) is
continuous.

Since π is surjective, we have by Proposition 4.5.17 that

kerπ′ = π(V )⊥ = W⊥ = {0}

so that π′ is an injection.

By Theorem 4.5.19, we have that Lc(W ) carries the initial convergence with re-
spect to π′. We then have that π′−1 : π′(Lc(W )) → Lc(W ) is continuous by the
universal property of initial convergence applied to the fact that π′ ◦ π′−1 is merely
the injection of π′(Lc(W )) into Lc(V ) which is continuous.

Now, suppose that ϕ ∈ Lc(W ). Suppose that v ∈ kerπ. We then have that
π′(ϕ)(v) = ϕ ◦ π(v) = 0 so that π′(ϕ) ∈ (kerπ)⊥. Now, suppose that ψ ∈ Lc(V )
and ψ ∈ (kerπ)⊥. By the universal property of quotients, there is some ψ′ ∈ Lc(W )
so that ψ = ψ′ ◦ π = π′(ψ′). Thus, π′(L(W )) = (ker π)⊥. QED

Corollary 4.5.21. If V is a CVS with subspace M , then Lc(V/M) ∼= M⊥.

Theorem 4.5.22. If {Vi}i∈I is a family of CVSs, then there is an isomorphism

u : Lc
(∏

i∈I

Vi

)
→
⊕
i∈I

Lc(Vi)

where for each linear functional f in the domain we have u(f) = (f ◦ ei)i∈I and ei : Vi →∏
i∈I Vi is the usual injection.
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Proof. We first must address well definition. Certainly, for any i ∈ I and continu-
ous linear f :

∏
i∈I Vi → K, the coordinate maps f◦ei : Vi → K are continuous linear

functionals. We must check that only finitely many are non-zero. Suppose not, that
is for some infinite J ⊆ I and each j ∈ J there is vj ∈ Vj so that f(ej(vj)) 6= 0. With-
out loss of generality, we may have f(ej(vj)) = 1 and J = {j0, j1, ...} countable. For
each n ∈ N, define zn ∈

∏
i∈I Vi by for each i ∈ I

(zn)i =

{
0 i /∈ J or i = jk ∈ J and k < n

vi else

By this definition, we have that for all n ∈ N

z0 = zn +
∑
k<n

ej(vjk)

and

f(z0) = f(zn) + n.

Consider the net α : N →
∏

i∈I Vi given by αn = zn. We have that α → 0 since
each coordinate is eventually zero. By continuity of f , we then have that f(α)→ 0.
But this is impossible since f(zn) = f(z0) − n. From this contradiction, we have
that f ◦ ei must be zero for all but finitely many i ∈ I . We then have that u is well
defined.

We will next show that u is an injection. Suppose that f is a continuous linear
functional on

∏
i∈I Vi with f ∈ keru. Place a well ordering ≤ on I with minimum

s and maximum t. Let v ∈
∏

i∈I Vi. Define a net α : I →
∏

i∈I Vi so that the i-th
coordinate of αj is given by

(αj)i =

{
0 i < j

vi j ≤ i

for all i, j ∈ I . Observe that α → αt. Thus by continuity of f ∈ keru, we have
f(α) → 0 = f(αt). We claim that f(α) is constant with value f(αs). Suppose
to contradiction that f(α) is not constant. Since I is well ordered, there is least
s < i0 ∈ I so that f(αi0) 6= f(αs). We distinguish two cases, i0 is the successor of
some i′0 or not. First, suppose i0 is the successor of i′0. Let x ∈

∏
i∈I Vi be given by

xi =

{
(αi′0)i i = i′0
0 else

for each i ∈ I . We have that αi0 = αi′0 − x. We see that f(x) = 0. Thus, f(αi0) =
f(αi′0) = f(αs). Now, suppose that i0 has no predecessor. Let J = {j ∈ I : j < i0}.
We have that α|J → αi0 . Then we have f(α|J)→ f(αi0). But since this is a constant
net in K with value f(αs), we have f(αi0) = f(αs). This contradiction proves that
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f(α) is constant. We now have that f(α) is a constant sequence converging to 0.
Therefore, f(αs) = 0. Since αs = v, we have that f(v) = 0. This holds for all v ∈ V ,
so we have f = 0. Therefore, keru = {0} and u is an injection.

We now show that u is a surjection. Let f = (fi)i∈I ∈
⊕

i∈I Lc(Vi). Note that
only finitely many of the fi : Vi → K may be non-zero. Let g :

∏
i∈I Vi → K by

g =
∑
i∈I

fi ◦ πi

where πi :
∏

i∈I Vi → V are the usual projection maps. This is well defined since
only finitely many fi are non-zero. Further, this is continuous and linear since it is
a sum of compositions of such functions. It is clear that u(g) = f

We lastly show that u is continuous. Since u is linear, it suffices to show that u
is continuous at 0. Consider a filter F → 0 in Lc

(∏
i∈I Vi

)
. Define a filter on∏

i∈I Vi given by

G =

{
G ⊆

∏
i∈I

Vi

∣∣∣∣ G ⊇∏i∈I Ai so that Ai = Vi for all but finitely many i ∈ I ,

and Ai = {0} otherwise

}

We have that G → 0 since πi(G) = [0] for all i ∈ I . Thus, F (G)→ 0 in K, and there
is some F0 ∈ F and G0 ∈ G so that F0(G0) ⊆ D. By construction of G, we may find
finite J ⊆ I so that when

Ai =

{
{0} i ∈ J
Vi i ∈ I r J

we have

F0

(∏
i∈I

Ai

)
⊆ D.

In particular, for each i ∈ I r J and n ∈ N and v ∈ Vi, we have that F0(ei(nv)) ⊆ D.
Since F0(ei(nv)) = nF0(ei(v)), it must be that F0(ei(Vi)) = 0 for all i ∈ I r J .

For each i ∈ I , we know that the adjoint e′i : Lc
(∏

i∈I Vi
)
→ Lc(Vi) is linear and

continuous. We thus have that e′i(F ) → 0 in Lc(Vi) for all i ∈ I . For each i ∈ I , let
Ei : Lc(Vi) →

⊕
i∈I Lc(Vi) be the usual injection. As this is linear and continuous,

Ei(e
′
i(F ))→ 0. We now see that

u(F ) ⊇
∑
j∈J

Ej(e
′
j(F ))
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since for any F ∈ F ,∑
j∈J

Ej(e
′
j(F )) =

{∑
j∈J

Ej(e
′
j(fj)) : fj ∈ F

}
⊇
{∑

j∈J

Ej(e
′
j(f)) : f ∈ F

}
=

{∑
j∈J

Ej(f ◦ ej) : f ∈ F
}

⊇
{∑

j∈J

Ej(f ◦ ej) : f ∈ F ∩ F0

}
= {(f ◦ ei)i∈I : f ∈ F ∩ F0}
= u(F ∩ F0)

∈ u(F ).

Therefore, u(F )→ 0 in
⊕

i∈I Lc(Vi) and u is continuous.

We must lastly show that u−1 is continuous. One can see for f = (fi)i∈I ∈
⊕

i∈I Lc(Vi)
that

u−1(f) =
∑
i∈I

fi ◦ πi.

To show that u−1 is continuous, it suffices to show that for all i ∈ I , the composition
u−1 ◦ Ei : Lc(Vi) → Lc

(∏
i∈I Vi

)
is continuous. Note that if i, j ∈ I and f ∈ Lc(Vi),

then

(Eif)j ◦ πj =

{
f ◦ πi i = j

0 i 6= j

Thus, u−1 ◦ Ei = π′i which is certainly continuous.

We have now that u is a linear homeomorphism as desired. QED

Theorem 4.5.23. If {Vi}i∈I is a family of convergence vector spaces, then

u : Lc
(⊕

i∈I

Vi

)
→
∏
i∈I

Lc(Vi)

given by u(f) = (f ◦ ei)i∈I , where ej : Vj →
⊕

i∈I Vi is the defining injection, is a linear
homeomorphism.

Proof. It is clear that u is linear and well defined.

We will show that u is a bijection. Suppose f ∈ keru. We then have that f ◦ ei = 0
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for all i ∈ I , but since
⊕

i∈I Vi is spanned by
⋃
i∈I ei(Vi), we have that f = 0. There-

fore, u is an injection. Now, suppose that (fi)i∈I ∈
∏

i∈I Lc(Vi). For each j ∈ I , let
πj :

⊕
i∈I Vi → Vj be the usual projection. Define g :

⊕
i∈I Vi → K by

g(v) =
∑
i∈I

fi ◦ πi(v)

which is linear. To show that g is continuous, it suffices to show that each composi-
tion g◦ei is continuous. This composition is continuous because g◦ei = fi ∈ Lc(Vi).
Further, it is clear that u(g) = f so that u is surjective.

We will next show that u is continuous. As u is a map into a product space, we need
merely show that Pj ◦u is continuous for each projection Pj :

∏
i∈I Lc(Vi)→ Lc(Vj).

Notice that Pj ◦ u = e′j which is continuous. Note that

Lc
(⊕

i∈I Vi
)

Lc(Vj)

∏
i∈I Lc(Vi)

e′j

u−1
Pj

commutes for all j ∈ I .

We finally show that u−1 is continuous. Suppose that F → 0 in
∏

i∈I Lc(Vi).
For all j ∈ J we must then have Pj(F ) → 0. Therefore, e′j ◦ u−1(F ) → 0.
Since Lc

(⊕
i∈I Vi

)
is initial with respect to the e′j by Theorem 4.5.19, we have that

u−1(F )→ 0. Therefore, u−1 is continuous at 0 and thus everywhere.

We conclude that u is a linear homeomorphism. QED

The following proposition is rightly a corollary to Theorem 4.4.13 which was de-
layed as it requires adjoint mappings.

Proposition 4.5.24. If X is a c-embedded space and for each K ⊆ X compact we denote
by eK : K → X the inclusion map, then

LCc(X) =
⋃
{(e∗K)′(LCc(K))) : K ⊆ X compact }.

Proof. Clearly, it suffices to show that

LCc(X) ⊆
⋃
{(e∗)′(LCc(K))) : K ⊆ X compact }.

Fix ϕ ∈ LC(X). Then |ϕ| : C(X) → R is a continuous seminorm. By Theo-
rem 4.4.13, there is compact K ⊆ X and M > 0 so that

|ϕ(f)| ≤M sup
K
|f |
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for all f ∈ C(X).

Let e : K → X be the embedding map. This gives rise to the continuous restriction
e∗ : C(X) → C(K). We will show that e∗ is a surjection, that is any continuous
f : K → K may be extended to X .

Let i : K → tych(X) be the domain restriction of the quotient map. We will ar-
gue that i is an embedding. Suppose x, y ∈ K are distinct. Since X is functionally
Hausdorff due to being c-embedded, we have that the constant net at x does not
converge to y. There is then some continuous f : X → K which distinguishes be-
tween x and y. Thus, i(x) 6= i(y) and we have that i is an injection. Further, it is the
restriction of the quotient map and thus continuous. Lastly, since K is a compact
c-embedded space, it is topological Corollary 3.4.13. The codomain restriction of
i is then a continuous surjection from a compact topological space to a Hausdorff
space, so that it is a homeomorphism by Proposition 2.6.36.

We thus may view K as a subset of tych(X). Since it is a compact subset of a
Tychonoff space, any continuous f : K → K may be extended to a continuous
f̂ : X → K (see Appendix C.3). We may then continue this to X by composing
with the quotient q : X → σ(X); that is, f̂ ◦ q : X → K extends f for any f ∈ C(K).
In other words, we have that C(K) = {f |K : f ∈ C(X)}.

Observe that if g, f ∈ C(X) agree on K, then

|ϕ(f − g)| ≤M sup
K
|f − g| = 0

so that ϕ(f) = ϕ(g). Thus, we may safely define ϕ̃ : C(K) → K by ϕ̃(f |K) = ϕ(f).
Certainly, we know that

ϕ = ϕ̃ ◦ e∗ = (e∗)′(ϕ̃)

so that it only remains to show that ϕ̃ is continuous. Suppose we have net Λ in
C(X) so that Λ|K → f |K for some f ∈ C(X). This is equivalent to (Λ − f)|K → 0.
We now have

|ϕ(Λ− f)| ≤M sup
K
|Λ− f | = M sup |(Λ− f)|K | → 0

so that ϕ(Λ)→ ϕ(f) and thus, ϕ̃(Λ|K)→ ϕ̃(f |K). Therefore, ϕ̃ is continuous which
concludes the proof. QED

4.6 Reflexivity

In this section we define reflexive convergence vector spaces and prove that the
paradual of any convergence space is reflexive.
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Lemma 4.6.1. If V is a CVS, then map jV : V → Lc Lc(V ) given by jV (v) = evv is well
defined, linear, and continuous.

Proof. Linearity of jV clear as is the linearity of evv : Lc(V )→ K for any v ∈ V . We
next check that jV (v) is continuous. Suppose we have a net Λ → f in Lc(V ). We
have that jV (v)(Λ) = Λ(v) → f(v) = jV (v)(f). Thus, jV (v) is continuous for each
v ∈ V .

We lastly check that jV is itself continuous. This follows by Corollary 3.2.11 since
its primary transpose is ev : V × Lc(V )→ K which is continuous. QED

Notation 4.6.2. If V andW are CVSs and f : V → W is linear and continuous, then
the adjoint of the adjoint of f is denoted by f ′′ : Lc Lc(V ) → Lc Lc(W ); that is by
f ′′ = (f ′)′.

Remark 4.6.3. A straightforward diagram chase shows that if V and W are CVSs
and f : V → W is linear and continuous, then

V W

Lc Lc(V ) Lc Lc(W )

f

jV jW

f ′′

commutes. It is often convenient to write v̂ for jV (v) = evv. The commutativity of
the above diagram then reads as f ′′(v̂) = f̂(v) for all v ∈ V .

Definition 4.6.4. If V is a CVS, then V is called reflexive when jV is an isomorphism,
i.e. a linear homeomorphism.

Proposition 4.6.5. If V and W are isomorphic CVSs, then V is reflexive if and only if W
is.

Proof. Let h : V → W be an isomorphism. It follows that h′′ is an isomorphism.
Suppose jV is an isomorphism. Observe that jW = h′′ ◦ jV ◦ h−1 is a composition of
isomorphisms and thus an isomorphism. QED

The last result of this section will be that paraduals are reflexive. We will first need
two lemmas.

Lemma 4.6.6. If V is a convergence vector space, a subset B ⊆ L(V ) is called equicon-
tinuous when for any ε > 0 there exists for each v ∈ V a vicinity U of v so that for all
b ∈ B and w ∈ U one has |b(w) − b(v)| < ε. If B is equicontinuous, then the weak* and
continuous subspace convergence structures on B are identical.

Proof. Let Bσ and Bc denote B with its weak* and continuous convergence respec-
tively. By Corollary 4.5.7 we know that the identity map Bc → Bσ is continuous
and so it is left to demonstrate that the inverse is continuous. Suppose f ∈ B and Λ
is a net in B with Λ→ f in Bσ. Suppose α is a net in V with α→ v for some v ∈ V .
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Fix ε > 0. There is some vicinity U of v so that that for all b ∈ B and w ∈ U one
has |b(w)− b(v)| < ε. In particular, for each ` ∈ dom(Λ) one has |Λ`(w)− Λ`(v)| < ε
for each w ∈ U . Since α → v, we have that α ∈ev U . Thus, for i ∈ dom(α) large
enough and any ` ∈ dom(Λ) there holds |Λ`(αi)− Λ`(v)| < ε/2. Since Λ→ f in the
weak* sense, we have that Λ(v) → f(v). Thus, when ` ∈ dom(Λ) is large enough,
we have |Λ`(v)− f(v)| < ε/2. It follows by application of the triangle equality that
for `, i large enough |Λ`(αi)−Λf (v)| < ε. Therefore, Λ(α)→ f(v). As this holds for
all v ∈ V and nets α→ v in V , we have that Λ→ f in Bc as desired. QED

Lemma 4.6.7. If V is a normed space and B denotes the closed unit ball in Lop(V ), then
B is equicontinuous.

Proof. Fix ε > 0 and 1, ε > δ > 0. Let v ∈ V and w ∈ B(v, δ) and ϕ ∈ B. We then
have ||w − v|| < ε so that ||(w − v)/ε|| < 1. We compute

|ϕ(w)− ϕ(v)| = ε|ϕ(w − v)/ε|
≤ ε||ϕ|| (definition of operator norm)
< ε

so that B is equicontinuous. QED

Theorem 4.6.8. If X is a convergence space, then Cc(X) is reflexive.

Proof. Recall from Definition 3.4.1 the map iX : X → CcCc(X). We restrict the
codomain and redefine to obtain iX : X → LcCc(X). Next, we consider i∗X and
restrict the domain to obtain i∗X : Lc LcCc(X) → Cc(X). Observe that if f ∈ Cc(X)
and x ∈ X , then

i∗X(jCc(X)(f))(x) = jCc(X)(f) ◦ iX(x)

= iX(x)(f)

= f(x).

Thus, i∗X ◦ jCc(X) = idCc(X). To show that i∗X is also a right inverse for jCc(X), it
suffices to show that i∗X is an injection.

Let V denote the subspace of LcCc(X) spanned by iX(X). Suppose that V is dense
in LcCc(X). Suppose there are ϕ, ψ ∈ Lc LcCc(X) so that i∗X(ϕ) = i∗X(ψ). Let
f ∈ LcCc(X). We may find a net α in V so that α→ f . By continuity, we have that
ϕ(α) → ϕ(f) and ψ(α) → ψ(f). Observe that for any index a for α, we may find
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λ1, ..., λn ∈ K and x1, ..., xn ∈ X so that

ϕ(αa) = ϕ

( n∑
i=1

λiiX(xi)

)
=

n∑
i=1

λii
∗
X(ϕ)(xi)

=
n∑
i=1

λii
∗
X(ψ)(xi)

= ψ

( n∑
i=1

λiiX(xi)

)
= ψ(αa)

so that ϕ(α) = ψ(α). Since K is Hausdorff, we have that ϕ(f) = ψ(f) and thus
ϕ = ψ. We conclude that to show that i∗X is injective, it suffices to show that V is
dense in LcCc(X).

We first consider the case wherein X is a compact topological convergence space.
In this case, we have by Corollary 4.2.5 that Cc(X) is a Banach space under the
supremum norm. Let || · || : Cc(X)→ R denote the supremum norm on Cc(X) and
let || · || : LCc(X)→ R be the usual operator norm

||ϕ|| = sup{|f(x)| : ||x|| ≤ 1}.

Define

B = {ϕ ∈ LcCc(X) : ||ϕ|| ≤ 1}

and

E = {αiX(x) : α ∈ K ∧ |α| = 1 ∧ x ∈ X}.

It is known7 that E is the set of extreme points of B. Further, B is compact by
the Banach-Alaoglu theorem.8 Thus, the Krein-Milman theorem9 tells us that B =

co(E) where this closure is taken with respect to the weak*-topology. By Lemma 4.6.6
and Lemma 4.6.7, be have that B = co(E) = a(co(E)) in the continuous conver-
gence structure as well. Thus, if ϕ ∈ LcCc(X), either ϕ = 0 ∈ V or there is a net
α in co(E) ⊆ V so that α → ϕ/||ϕ|| and ||ϕ||α → ϕ in the continuous convergence
structure. Since ||ϕ||α is a net in V , we then have that V is dense if LcCc(X) as
desired.

7See Lemma V.8.6 of [Dun58]
8See, for instance, Theorem 8.4.1 of [NB10].
9See, for instance, Theorem 9.4.6 of [NB10].
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We proceed to the case in which X may not be compact. Since Cc(X) ∼= Cc(c(X)),
we may assume that X is c-embedded. Every compact K ⊆ X is c-embedded and
thus topological and we note that

K X

LcCc(K) LcCc(X)

i

iK iX

i∗∗

commutes. If A ⊆ LcCc(X) define [A] to be the subspace of LcCc(X) spanned by
A. We see that

cl([iX(X)]) ⊇ cl([iX(i(K))])

= cl([i∗∗(iK(K))])

⊇ i∗∗(cl([iK(K)]))

= i∗∗(LcCc(K))

so that

cl([iX(X)]) ⊇
⋃
{i∗∗(LcCc(K)) : K ⊆ X compact}.

This right hand side is exactly LcCc(X) by Proposition 4.5.24. Therefore, V =
[iX(X)] is dense in LcCc(X) which establishes that i∗X is an injection. This in turn
implies that i∗X is right inverse to jCc(X). Since we have already shown this to be a
left inverse, we have that jCc(X) is an embedding and Cc(X) is reflexive. QED





Conclusion

Here ends this introduction to convergence spaces, introducing basic properties
and constructions in this setting. It has been shown that convergence spaces ex-
tend the notion of topological spaces and capture types of convergence which are
fundamentally non-topological. Hopefully the reader has seen the benefits offered
by convergence spaces, including a natural and painless proof of Tychonoff’s the-
orem and a canonical convergence structure for function spaces.

It hardly need be said that there is much more to the study of convergence spaces
than is contained in this thesis. In his PhD dissertation [Pat14], Patten explores
a natural convergence structure on reflexive digraphs and extends the notion of
differentials from single variable calculus to the broader setting of convergence
spaces. The text [DM16] by Dolecki and Mynard offers an introduction to topology
from the viewpoint of convergence spaces and delves much further than this work
into convergence theory. Of much interest to this author is the extension of the
idea of completeness of metric spaces to the larger setting of convergence spaces
where it remains closely tied to compactness. The functional analytic side of con-
vergence theory can be explored more deeply in [BB02]. Here one finds, amongst
other fascinating topics, convergence theoretic versions of the Hahn-Banach and
Banach-Steinhaus theorems.





Appendix A

Some Category Theory

The language of category theory is used sporadically throughout this work. This
appendix gathers together some basic terms and results so that a reader unfa-
miliar with category theory need not find another source. Sections one and two
draw from [Lei14] while sections three and four are based on Chapters 4 and 5 of
[BBT20].

A.1 What Are Categories?

Definition A.1.1. A category C consists of the following data

1. A collection ob C called the objects of C. We write A ∈ C for A ∈ ob C.

2. For each A,B ∈ C a collection Hom(A,B) of morphisms. If f ∈ Hom(A,B),
we say that the source of f is A and B is the target of f . One writes f : A→ B
to mean f ∈ Hom(A,B). Two morphisms of C may only be equal if they
have the same source and target.

3. For each A,B,C ∈ C a function

◦ : Hom(A,B)×Hom(B,C)→ Hom(A,C)

which is associative, that is if A,B,C,D ∈ C and f : A → B and g : B → C
and h : C → D then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

4. For each A ∈ C a morphism idA ∈ Hom(A,A) so that for all B ∈ C, all
f : B → A, and all g : A→ B that idA ◦f = f and g ◦ idA = g.

Example A.1.2. SET is the category with

1. objects: sets,

2. for sets A,B the morphisms Hom(A,B) are the functions from A to B,

3. composition: the usual composition of functions.
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Example A.1.3. TOP is the category with

1. objects: topological spaces,

2. for topological spaces A,B the morphisms Hom(A,B) are the continuous
functions from A to B,

3. composition: the usual composition of functions.

Example A.1.4. If G is a group, one may consider the category with

1. objects: a single object X ,

2. Hom(X,X) = G,

3. If g, h ∈ Hom(X,X) then g ◦ h = gh is the product of g and h in G.

Example A.1.5. If C is a category, one may consider the opposite category Cop

1. objects: ob C,

2. HomCop(X, Y ) = HomC(Y,X).

3. So that, denoting composition in C with ◦ and in Cop by ∗, we have f ∗ g =
g ◦ f .

Definition A.1.6. If C is a category with objects A,B, a morphism f : A → B is
called an isomorphism when there exists a morphism g : B → A so that g ◦ f = idA
and f ◦ g = idB. When there exists an isomorphism between object A,B ∈ C, one
says A and B are isomorphic and writes A ∼= B.

Definition A.1.7. A category C is called locally small when for each X, Y ∈ C the
collection Hom(X, Y ) is a set.

Definition A.1.8. A category is called small when it is locally small and the collec-
tion of objects is a set.

Definition A.1.9. SupposeA is a family of objects10 in a category C. The categorical
product ofA, if it exists, is an object

∏
A of C along with morphisms πA :

∏
A → A

for each A ∈ A so that for any object Ω of C with morphisms fA : Ω → A for each
A ∈ A there is a unique morphism h : Ω→

∏
A so that

Ω
∏
A

A

h

fA
πA

commutes for each A ∈ A.
10Note that this family may be of objects with indices so that a single object may appear more

than once.
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Notation A.1.10. If A = {A1, A2, ..., An}, write A1 × A2 × · · · × An for
∏
A.

Example A.1.11. In SET, the cartesian product is the categorical product. In TOP, the
cartesian product equipped with the product topology is the categorical product.

Definition A.1.12. Suppose A is a family of objects in a category C. The categorical
coproduct of A, if it exists, is an object

∐
A of C along with morphisms eA : A →∐

A for each A ∈ A so that for any object Ω of C with morphisms fA : A → Ω for
each A ∈ A there is a unique morphism h :

∐
A → Ω so that∐

A Ω

A

h

eA
fA

commutes for each A ∈ A.

Notation A.1.13. If A = {A1, A2, ..., An}, write A1 t A2 t · · · t An for
∐
A.

Remark A.1.14. The universal property of products and coproducts determines
these objects up to isomorphism, that is any two objects satisfying either Defini-
tion A.1.9 or Definition A.1.12 (for the same collection of objects) must be isomor-
phic.

A.2 Functors, Natural Transformations, and Equiva-
lence of Categories

Definition A.2.1. If C and D are categories, a functor F : C → D consists of assign-
ments

1. for each A ∈ C an object F (A) ∈ D, and

2. for each A,B ∈ C and morphism f : A → B a morphism F (f) : F (A) →
F (B)

so that

1. F (idA) = idF (A) for each A ∈ C, and

2. for each A,B,C ∈ D and functions f : A→ B and f : B → C that F (g ◦ f) =
F (g) ◦ F (f).

Remark A.2.2. Each category C has an identity functor idC : C → C which does
nothing to objects or morphisms.

Definition A.2.3. A functor F : C → D is called faithful (resp. full) when for all
A,B ∈ C, the assignment Hom(A,B) → Hom(F (A), F (B)) given by f 7→ F (f) is
injective (resp. surjective).
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Definition A.2.4. A functor F : C → D is called essentially surjective on objects if for
all B ∈ D there is A ∈ C so that F (A) ∼= B.

Definition A.2.5. If C and D are categories and F,G : C → D are functors, a
natural transformation α from F to G consists of the following data:

1. for each object A ∈ C a morphism αA : F (A) → G(A) in D called the compo-
nent of α at A

2. so that for all objects A,B ∈ C and all morphism f : A→ B, the diagram

F (A) F (B)

G(A) G(B)

F (f)

αA αB

G(f)

commutes. Two natural transformations between the same functors are called
equal when their component morphisms are equal.

Remark A.2.6. It is not difficult to verify that the composition of natural transfor-
mations via the composition of their components results in another natural trans-
formation. Further, each functor has an identity natural transformation, i.e. one
whose components are each identity morphisms. Thus, for categories C and D,
one may consider the functor category [C,D] whose objects are functors from C to
D and whose morphisms are natural transformations.

Lemma A.2.7. A natural transformation α is a (natural) isomorphism of functors F,G :
C → D if and only if each component αA is an isomorphism for each A ∈ C.

Proof. Suppose α is an isomorphism. We then have that there is some natural trans-
formation α−1 fromG to F so that αα−1 = idG and α−1α = idF . However, we know
the components of a composition are just the composition of components and the
components of the identity natural transformation are simply the identity maps.
That is, for each A ∈ C, we have αAα−1

A = idG(A) and α−1
A αA = idF (A). Thus, each

component of α is an isomorphism.

Now, suppose that for each component αA of α, we have an inverse α−1
A . It suf-

fices to show that the α−1
A form the components of a natural transformation from

G to F . To this end, let f : A→ B be a morphism in C. Indeed, it follows from

G(f) ◦ αA = αB ◦ F (f)

and the existence of α−1
A and α−1

B that

α−1
B G(f) = F (f)α−1

A

which is naturality of the transformation with components α−1
A for each A ∈ C.

QED
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Definition A.2.8. Two categories C and D are called equivalent when there exist
functors F : C → D and G : D → C and natural isomorphisms α : F ◦ G → idC

and β : G ◦ F → idD.

Theorem A.2.9. Categories C and D are equivalent if and only if there exists a functor
F : C → D which is full, faithful, and essentially surjective on objects.

Proof. Suppose C and D are equivalent categories. We produce functors F : C →
D and G : D → C and natural isomorphisms α : F ◦G→ idD and β : idC → G ◦F .
We will prove that F is full, faithful, and essentially surjective on objects.

Suppose B ∈ D. We then have that G(B) ∈ C and F ◦ G(B) ∈ D. Further,
αB : F ◦ G(B) → B is an isomorphism since α is a natural isomorphism. Thus, F
is essentially surjective on objects.

Now, suppose that f, f ′ : A → A′ are morphisms in C so that F (f) = F (f ′).
Thus, G ◦ F (f) = G ◦ F (f ′). Consider the following two naturality squares glued
together:

A A′

G ◦ F (A) G ◦ F (A′)

A A′

f

βA βA′

β−1
A

G◦F (f)

β−1
A′

f ′

This whole diagram commutes, from which one may read f = f ′. Thus, F is faith-
ful. By analogous reasoning, G is faithful.

Lastly, let A,B ∈ C and g ∈ Hom(F (A), F (A′)). We define f : A → B by
f = β−1

B G(g)βA. By naturality, we have that

G ◦ F (A) G ◦ F (B)

A B

G◦F (f)

βA

f

βB

commutes. From this, one may determine that G(g) = G ◦ F (f). By faithfulness of
G, we have g = F (f). Thus, F is full.

Now, we proceed to the other direction. Let F : C → D be full, faithful, and
essentially surjective on objects. We will construct G : D → C witnessing the
equivalence of C and D. By the essential injectivity on objects of F , for eachB ∈ D,
we may find some G(B) ∈ C so that F (G(B)) ∼= B with isomorphism witnessed
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by γB. Now, supposing that B,B′ ∈ D and there is some map f : B → B′, one
considers the composition:

γ−1
B′ fγB : F (G(B))→ F (G(B′)).

By fullness of F , we have some G(f) : G(B) → G(B′) so that F (G(f)) = γ−1
B′ fγB.

We claim the object and morphism assignments given byB 7→ G(B) and f 7→ G(f)
define a functor G : D → C. Let B ∈ D. We have that F (G(idB)) = idF (G(B)), and
by faithfulness of F thatG(idB) = idG(B). A similar process and invocation of faith-
fulness also shows that G respects composition.

We now need only show that F ◦ G and G ◦ F satisfy the appropriate naturality
condition. We claim for each B ∈ B that γB is the component of a natural isomor-
phism γ : F ◦G→ idB. That each component is an isomorphism has already been
established. The commutation of the appropriate naturality square is given purely
from the definition of G applied to morphisms.

Lastly, we must find a natural isomorphism α : G ◦ F → idC. Suppose A ∈ C.
One then has γF (A) : F (G ◦ F (A)) → F (A). By fullness of F , we may find αA :
G ◦ F (A)→ A so that F (αA) = γF (A). We claim that this defines the components of
the natural isomorphism α. Note that αA is invertible as there is β : A→ G ◦ F (A)
so that F (β) = γ−1

F (A) (by fullness of F ), so that F (βαA) = F (αAβ) = idF (A) which
implies β = α−1

A by faithfulness of F . It remains to show that α is natural. Let
A,A′ ∈ A and f : A→ A′. Consider the naturality square

A A′

G ◦ F (A) G ◦ F (A′)

f

G◦F (f)

αA αA′

which commutes by definition of α and faithfulness of F . QED

Proposition A.2.10. Suppose C and D are categories and F : C → D is a full and
essentially surjective on objects functor. For any objects A,B ∈ C so that A × B exists,
then F (A)× F (B) exists and F (A×B) ∼= F (A)× F (B).

Proof. We have that F (πA) : F (A × B) → F (A) and F (πB) : F (A × B) → F (B).
Suppose that Ω is an object of D with f : Ω → A and g : Ω → B. Since F is
essentially surjective on objects, we have some W ∈ C so that Ω ∼= F (W ). Let
h : F (W ) → Ω witness this isomorphism. We have that f ◦ h : F (W ) → F (A) and
g◦h : F (W )→ F (B). By fullness of F , there is some f ′ : W → A and g′ : W → B so
that F (f ′) = f ◦ h and F (g′) = g ◦ h. By the universal property governing products
in C, there is some ω : W → A×B so that
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W

A×B B

A

ω

f ′

g′

πA

πB

commutes. It follows that

F (W )

F (A×B) F (B)

F (B)

F (ω)

f◦h

g◦h

F (πA)

F (πB)

commutes. From this we conclude that

Ω

F (A×B) F (B)

F (B)

F (ω)◦h−1

f

g

F (πA)

F (πB)

commutes. Thus, F (A×B) ∼= F (A)× F (B) QED

Definition A.2.11. If C and D are categories, we say that D is a subcategory of C
when the collection of objects and morphisms of D is a subcollection of the objects
of C and the inclusion D → C is a functor.

A.3 Limits and Colimits

Definition A.3.1. A diagram in a category C is a functor D : J → C where J is a
small category. One says that the diagram D is J shaped. Given an object A ∈ C one
has access to the constant J shaped diagram JA which sends each object of J to A and
each morphism to idA.

Definition A.3.2. Given a diagram D : J → C and an object A ∈ C, a cone from
A to D is a natural transformation JA → D and a cone from D to A is a natural
transformation D → JA.

Definition A.3.3. A limit of a diagram D : J → C is an object limD of C along with
a cone η : limD → D so that for all A ∈ C and cones γ : A → D there exists a
unique morphism h : A→ limD so that for all J ∈ J the diagram
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A

limD DJ

h
γJ

ηJ

commutes. Likewise, a colimit of D is an object colimD of C along with a cone
ε : D → colimD so that for all A ∈ C cones λ : D → A there exists a unique
morphism h : colimD → A so that for all J ∈ J the diagram

DJ

colimD A

εJ
λJ

h

commutes.

Proposition A.3.4. If S : J → C is a diagram with limit limD and A ∈ C is isomorphic
to limD, then A is a limit of D.

Proof. Let f : A → limD be an isomorphism. Let η : limD → D a cone witnessing
that limD is a limit. For each J ∈ J, define εJ : A→ DJ by εJ = ηJf . One sees that
this defines a cone ε : A→ D. Suppose γ : B → D is a cone. We observe that

B

A DJ

γJ
f−1h

εJ

commutes where h is the unique morphism making

B

limD DJ

γJ
h

ηJ

commute. Should any other h′ make

B

A DJ

γJ
h′

εJ

commute, then

B

limD DJ

γJ
fh′

ηJ

commutes so that fh′ = h and h′ = f−1h. This show that A is a limit of D. QED
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Proposition A.3.5. Limits and colimits of diagrams are unique up to isomorphism.

Proof. Suppose C is a category and D : J → C is some diagram. Suppose A and B
are limits of D with witnessing cones α : A → D and β : B → D. There are then
unique morphisms h1 : A → B and h2 : B → A so that for all J ∈ J we have that
the diagrams

A B

B DJ A DJ

h1

αJ
h2

βJ

βJ αJ

commute. But then we see that the diagrams

A A

A DJ A DJ

αJ
idA h2h1

αj

αJ αJ

commute. Therefore, by the uniqueness clause in the definition of limit, we have
h2h1 = idA. By like reasoning we have h1h2 = idB so that h1 and h2 are isomor-
phisms.

The proof for colimits is similar. QED

Remark A.3.6. It is thus sensible to talk about the (co)limit of a diagram.

Example A.3.7. Let C be a category. Let A be any small subcategory with only
identity morphisms. Let D : A → C be given by D(A) = A. Then, if it exists,
limD =

∏
A and colimD =

∐
A.

Definition A.3.8. The limit of a diagram of the shape

• •

is called an equalizer. The colimit of such a diagram is called a coequilizer.

Definition A.3.9. A category is called complete if it contains limits for all its dia-
grams. A category is called cocomplete if it has colimits for all its diagrams.

Theorem A.3.10. A category is complete if it has all equalizers and small products (those
taken over sets). A category is cocomplete when it has all coequilizers and all small coprod-
ucts.

Proof. Suppose C is a category with all small products and all equalizers and D :
J → C is a diagram. Define

A =
∏
J∈J

DJ.
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Thus, for each J ∈ J we have projections πAJ : A→ DJ . Let Hom(J) denote the set
of morphisms in J and for each morphism f ∈ Hom(J), denote by s(f) the domain
object of f and by t(f) the image object of f . Define

B =
∏

f∈Hom(J)

Dt(f).

We have then for each f ∈ Hom(J) projection πBf : B → Dt(f). Observe that for
each f ∈ Hom(J) we have a morphism Df ◦ πAs(f) : A → Dt(f). We also have
πAt(f) : A → Dt(f). Thus, by the universal property of products, we have unique
maps h, i : A→ B so that for each f ∈ Hom(J) the diagrams

A B A B

Dt(f) Dt(f)

h

Df◦πA
Ds(f)

πBf

i

πA
Dt(f)

πBf

commute. Let Ω be the equalizer of

A B

h

i

with ω : Ω → A the given morphism with hω = iω. We claim that Ω is a limit of
D. For each J ∈ J, define ηJ : Ω → DJ by ηJ = πAJ ◦ ω. We then see that for all
morphism f : J → J ′ in J, the diagram

Ω

DJ DJ ′

ηJ ηJ′

Df

commutes since

Df ◦ ηJ = Df ◦ πAJ ◦ ω
= πBf ◦ h ◦ ω
= πBf ◦ i ◦ ω
= πAJ ′ ◦ ω
= ηJ ′ .

This shows that the ηJ are components of a cone η : Ω → D. Now, suppose γ :
W → D is another cone. By the universal property of products there is a map
s : W → A so that for all J ∈ J

W A

DJ

s

γJ
πAJ
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commutes. Thus, we have for all f ∈ Hom(J) that

πBf ◦ h ◦ s = Df ◦ γs(f)

= γt(f)

and

πBf ◦ i ◦ s = πAt(f) ◦ s
= γt(f).

So, by the uniqueness clause in the definition of products, we have that h◦s = i◦s.
Therefore, W has a cone over the diagram for which Ω is an equalizer. We thus
have a unique map r : W → Ω so that

W Ω A B
r ω

h

i

commutes and ω ◦ r = s.

We then have that for all J ∈ J the diagram

W

Ω DJ

r
γJ

ηJ

commutes.

Lastly, suppose r′ : W → Ω so that

W

Ω DJ

r′
γJ

ηJ

commutes. We then have that ω ◦ r′ = s by the universal property constructing s.
But since Ω is the equalizer, this forces r = r′.

This shows that Ω is a limit of D as desired.

The proof for cocompleteness is similar. QED

Definition A.3.11. A functor F : C → D is called continuous when for all dia-
grams D in C with a limit limD, one has F (limD) is a limit of FD. Likewise, F is
called cocontinuous when for all diagrams D in C with a colimit colimD, one has
F (colimD) is a colimit of FD.
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A.4 Adjunctions

Throughout this section, all categories will be assumed to be locally small.

Lemma A.4.1. Suppose C and D are categories and L : C → D and R : D → C are a
pair of functors. Fix an object X of C and Y of D. The following are functors:

1. Hom(X,R−) : D → SET defined for objects Z,Z ′ ∈ D with morphism f : Z → Z ′

as

Hom(X,Rf) : Hom(X,RZ)→ Hom(X,RZ ′) by g 7→ R(f) ◦ g

2. Hom(LX,−) : D → SET defined for objects Z,Z ′ ∈ D with morphism f : Z → Z ′

as

Hom(LX, f) : Hom(LX,Z)→ Hom(LX,Z ′) by g 7→ f ◦ g

3. Hom(−, RY ) : Cop → SET defined for objects Z,Z ′ ∈ C with morphism f : Z →
Z ′ as

Hom(f,RY ) : Hom(Z ′, RY )→ Hom(Z,RY ) by g 7→ g ◦ f

4. Hom(L−, Y ) : Cop → SET defined for objects Z,Z ′ ∈ C with morphism f : Z →
Z ′ as

Hom(Lf, Y ) : Hom(Z ′, RY )→ Hom(Z,RY ) by g 7→ g ◦ L(f)

Definition A.4.2. Suppose C and D are categories. A pair of functors L : C → D
and R : D → C is called an adjunction when for each object X ∈ C and Y ∈ D
there is an isomorphism of sets

λX,Y : Hom(LX, Y ) ∼= Hom(X,RY )

so that for each X ∈ C the family

λX,− : Hom(LX,−)→ Hom(X,R−)

and for each Y ∈ D the family

λ−,Y : Hom(L−, Y )→ Hom(−, RY )

is a natural transformation. In this case, L is called left adjoint and R is called right
adjoint.

There is another characterization of adjoints given by the next theorem.

Theorem A.4.3. An adjunction between categories C and D is a pair of functor L : C →
D called the left adjoint and R : D → C called the right adjoint along with natural
transformation η : idC → RL and ε : LR → idD call the unit and counit of adjunction
so that for all X ∈ C and Y ∈ D the diagrams
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LX LRLX RY RLRY

LX RY

Lηx

idLX
εLX

idRY

ηRY

RεY

commute.

Proposition A.4.4. Suppose L : C → D and R : D → C are left and right adjoints.
Then L is cocontinuous and R is continuous.

Definition A.4.5. A functor R : D → C is said to satisfy the solution set conditions
when for each object A ∈ C there exists a set {Bi}i∈I of objects in D and a set of
morphisms {fi : A → RBi}i∈I so that for any B ∈ D and morphism f : A → RB
there is i ∈ I and h : Bi → B so that

A RB

RBi

f

fi Rh

Theorem A.4.6 (Freyd’s Adjoint Functor Theorem). If D is a locally small, complete
category and R : D → C is a continuous functor satisfying the solution set conditions,
then R has a left adjoint.

For a proof of this result, see Chapter 4.6 of [Rie16].

Definition A.4.7. A (locally small) category C is called Cartesian closed, when for
each C ∈ C the functor (·)× C : C → C has a right adjoint.





Appendix B

Net-Filter Equivalence and
Convergence as Functor

In this appendix, we describe the equivalence of nets and filters in the language
of category theory. We then give an alternative definition of convergence space
where the convergence structure is a functor and an equivalent definition where
nets are the primitive converging objects. As far as we know this characterization
does not appear in the literature and is completely new.

B.1 Net-Filter Equivalence

A key conceptual motif of Chapter 1 is that nets and filters are, in some sense, the
same thing. Using category theory, we can make this equivalence very precise.

Definition B.1.1. Given a set X we define two categories.

1. The first is the filter category of X , denoted Φ(X).

(i) The objects of Φ(X) are filters on X .

(ii) If F ,G are filters on X , we set

Hom(F ,G) =

{
(F ,G) F ⊆ G
∅ else

(iii) Given morphisms (F ,G) and (G,H), we define (F ,G) ◦ (G,H) = (F ,H).

2. The second is the net category of X , denoted N(X).

(i) The objects of N(X) are nets in X .

(ii) If α, β are nets in X , we set

Hom(α, β) =

{
(α, β) β is a subnet of α
∅ else
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(iii) Given morphisms (α, β) and (β, γ), we define (α, β) ◦ (β, γ) = (α, γ).

with these definitions in place, we may consider the formation of eventuality filters
and derived nets as functors between the filter and net categories.

Definition B.1.2. For any set X , we define functors

1. η : Φ(X) → N(X) by F 7→ η(F), and if (F ,G) is a morphism in Φ(X), then
(F ,G) 7→ (η(F), η(G)).

2. E : N(X) → Φ(X) by α 7→ E(α), and if (α, β) is a morphism in N(X), then
(α, β) 7→ (E(α), E(β)).

Remark B.1.3. These functors are certainly well defined on objects and are well
defined on morphisms by Definition 1.3.1 (1) and Theorem 1.3.4.

Theorem B.1.4. For any set X , the categories N(X) and Φ(X) are equivalent.

Proof. By Theorem A.2.9, it suffices to check that E : N(X)→ Φ(X) is full, faithful,
and essentially surjective on objects.

Since for any filter F on X we have E(η(F)) = F by Theorem 1.2.14, it follows
that E is full.

Next, fix nets α, β inX . If Hom(α, β) = ∅, then β is not a subnet of α and so by defi-
nition E(β) 6⊆ E(α) and so Hom(E(α), E(β)) = ∅ too. Otherwise, we have β is a sub-
net of α. By definition, we have E(α) ⊆ E(β) and Hom(E(α), E(β)) = (E(α), E(β))
while Hom(α, β) = (α, β). We then see that E is full.

Lastly, we have that E is faithful since each hom-set in N(X) contains at most one
morphism.

We conclude that N(X) and Φ(X) are equivalent. QED

B.2 Convergence as Functor

Definition B.2.1. If X is a set, a filter convergence structure on X is a functor λ :
Φ(X)→ P(X) such that

1. for all x ∈ X , we have x ∈ λ([x]);

2. for all F ,G ∈ Φ(X) we haveλ(F) ∩ λ(G) ⊆ λ(F ∩ G)

Remark B.2.2. Condition (2) may be reworded as follows. First, note that in light of
functoriality we have for any filter F ,G on X that

λ(F ∩ G) ⊆ λ(F) ∩ λ(G).
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Thus, in fact, condition (2) is equivalent to

λ(F) ∩ λ(G) = λ(F ∩ G).

Further, finite limits in both Φ(X) and P(X) are just intersection. So, property 2
can by rephrased as λ preserves finite limits.

The idea here us that λ assigns to each filter its set of limits. Indeed, it is not
difficult to see that this notion of filter convergence structure is identical to that
already in use. This new formulation does not immediately offer any benefit over
the usual definitions of convergence structure. The first payoff is that a similar
definition may be given for a net convergence structure without running into size
issues with the class of nets. It is then possible to prove that the corresponding
notions of convergence are identical.

Definition B.2.3. If X is a set, we define a net convergence structure to be a functor
λ : N(X)→ P(X) such that

1. If α is a constant net in X with value x, then x ∈ λ(α);

2. for each α, β ∈ N(X) we have λ(α) ∩ λ(β) ⊆ λ(α ∧ β).

Theorem B.2.4. Let X be any set.

1. If λ1 is a filter convergence structure, then λ1 ◦ E : N(X)→ P(X) is a net conver-
gence structure and every net convergence structure arises this way.

2. If λ2 is a net convergence structure, then λ2 ◦ η : Φ(X) → P(X) is a filter conver-
gence structure and all filter convergence structures arise this way.

Proof. We prove the first half of each statement first. Certainly, λ1 ◦ E : N(X) →
P(X) is a functor with the proper source and target categories. Now, suppose that
α is a net in X with constant value x. We then have that E(α) = [x]. Since λ1 is a
filter convergence structure, then x ∈ λ1[x]. We conclude that x ∈ λ1 ◦ E(α). Next,
supposing that α, β are nets in X , we have that E(α ∧ β) = E(α) ∩ E(β). Since λ1 is
a filter convergence structure, we have that λ1(E(α)) ∩ λ1(E(β)) ⊆ λ1(E(α) ∩ E(β)).
This is then exactly that λa ◦ E(α) ∩ λ1 ◦ E(β) ⊆ λ1 ◦ E(α ∧ β). Thus, λ1 ◦ E is a net
convergence structure.

A nearly identical argument holds for λ2 ◦ η. We of course have that this is a
functor with the proper source and target categories. If x ∈ X , we have that
η([x]) = α[x] ∼ α where α is any net with constant value x. We have since λ2

is a functor that λ2(η([x])) ∼= λ2(α). However, in P(X) the only isomorphisms
are equalities, so λ2(η[x]) = λ2(α). Thus, since λ2 is a filter convergence struc-
ture, x ∈ λ2 ◦ η([x]). Next, suppose that F ,G are filters on X . We have that
η(F ∩ G) = η(F) ∧ η(G). Thus,

λ2 ◦ η(F) ∩ λ2 ◦ η(G) ⊆ λ2 ◦ η(F ∩ G).
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Thus, λ2 ◦ η is a net convergence structure.

Now, suppose that λ is any filter convergence structure. We claim that λ = λ◦E ◦η.
This is clear since E ◦ η = idΦ(X).

Lastly, suppose that λ is any net convergence structure. We then claim that λ =
λ ◦ η ◦ E . This is certainly true. If α is any net, then α ∼ η ◦ E(α). Thus, λ(α) ∼=
λ ◦ η ◦ E(α). But, again, the only isomorphisms in P(X) are equalities. So, λ(α) =
λ ◦ η ◦ E(α) QED

B.2.1 Continuity

LetX and Y be sets. A function f : X → Y induces two functors fΦ : Φ(X)→ Φ(Y )
and fP : P(X) → P(Y ). These are given by fΦ(F) = f(F) and fP(A) = f(A) for
any filter F on X and any A ⊆ X .

Theorem B.2.5. Let X and Y be convergence spaces. Let λX and λY be the filter conver-
gence structures inherent to X and Y . A function f : X → Y is continuous if and only if
there exists a natural transformation from fP ◦ λX to λY ◦ fΦ.

Proof. Suppose such a natural transformation A exists. For any filter F on X , we
then have a morphism from fP ◦ λX(F) to λY ◦ fΦ(F). Of course, this just means
fP ◦ λX(F) ⊆ λY ◦ fΦ(F). Suppose that F → x in X . We then have x ∈ λX(F)
and f(x) ∈ fP ◦ λX(F). Thus, f(x) ∈ λY ◦ fΦ(F), so f(F) → f(x). This is exactly
continuity of f .

Now, suppose that f is continuous. Suppose F is a filter on X . By continuity,
if F → x, then f(F)→ f(x). This is exactly that fP ◦ λX(F) ⊆ λY ◦ fΦ(F). Thus, if
F ⊆ G are filters on X we have that

fP ◦ λX(F) fP ◦ λX(G)

λY ◦ fΦ(F) λY ◦ fΦ(G)

commutes. This is the desired naturality diagram. QED
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Some Topological Results

This appendix contains various results from topology for the reader’s convenience.

C.1 Normal Spaces, Urysohn’s Lemma, and Partitions
of Unity

The results of this section are standard, though many of the proof techniques used
here are inspired by the discussion on the relevant nLab pages.

Definition C.1.1. A topological spaceX is called normal when for every pairA,B ⊆
X of disjoint, closed subsets of X there are open sets U ⊇ A and V ⊇ B so that
U ∩ V = ∅.

Proposition C.1.2. If X is a normal space and Y ⊆ X is closed, then Y with the subspace
topology is normal.

Proof. Let A,B ⊆ Y be closed and disjoint. We have closed subsets A∗, B∗ ⊆ X so
that A = A∗ ∩ Y and B = B∗ ∩ Y . Since Y is closed in X , it follows that A and B
are closed in X . We may thus find U ⊇ A and U ⊇ B open in X which are disjoint.
Thus, U ∩ Y ⊇ A and V ∩ Y ⊇ B are open and disjoint in Y . QED

Definition C.1.3. The dyadic rationals are { a
2n

: a ∈ Z ∧ n ∈ N}.

Remark C.1.4. The dyadic rationals are dense in Q. We will write Q for the dyadic
rationals.

Theorem C.1.5. A topological space X is normal iff for all closed C ⊆ X and open sets
U ⊇ C there exists open V such that

C ⊆ V ⊆ V ⊆ U.

Proof. Suppose X is normal. Let C ⊆ U ⊆ X with C closed and U open. We have
that XrU is closed. Since X is normal, we have that there exists open sets UC ⊇ C
and UXrU ⊇ X r C such that

UC ∩ UXrU = ∅.
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It follows that UC ⊆ X r UXrU . Since UXrU is open, we have X r UXrU is closed.
Therefore,

C ⊆ UC ⊆ UC ⊆ X r UXrU ⊆ U

where this last containment follows from X rU ⊆ UXrU . Eliding one of the sets in
the above yields

C ⊆ UC ⊆ UC ⊆ U

which is precisely the desired result.

We proceed to the other direction. Suppose that for all closed C ⊆ X and open
sets U ⊇ C there exists open V such that

C ⊆ V ⊆ V ⊆ U.

Suppose C1, C2 are disjoint closed subsets of X . We have that X r C2 is open. We
may then find open V such that

C1 ⊆ V ⊆ V ⊆ X r C2.

We then have that C1 ⊆ V and C2 ⊆ X r V which is open. It is immediately clear
that V ∩ (X r V ) = ∅. Thus, we may separate any two disjoint closed subsets of X
by open sets, that is X is normal. QED

Theorem C.1.6. (Urysohn’s Lemma) Suppose X is a topological space. Then X is nor-
mal iff for any disjoint, closed A,B ⊆ X , there exists continuous f : X → [0, 1] such that
f(A) = {0} and f(B) = {1}.

Proof. We will start with the simple direction of showing that X is normal if for
any disjoint, closed A,B ⊆ X , there exists continuous f : X → [0, 1] such that
f(A) = {0} and f(B) = {1}. Let A,B be closed, disjoint subsets of X and f :
X → [0, 1] have the aforementioned properties. We have that A ⊆ f−1([0, 1

2
)) and

B ⊆ f−1((1
2
, 1]). Since [0, 1

2
) and (1

2
, 1] are open and disjoint in [0, 1], the continuity

of f guarantees that their preimages are open and disjoint inX . Thus, X is normal.

We now proceed to the harder direction of the proof. Assume X is a normal space.
Define C0 = A and U1 = X rB. Since A∩B = ∅, we see that C0 ⊆ U1. By Theorem
C.1.5 we may find an open set U1/2 and closed set C1/2 such that

C0 ⊆ U1/2 ⊆ C1/2 ⊆ U1.

This process may be iterated to obtain closed sets C1/4, C3/4 and open sets U1/4, U3/4

such that

C0 ⊆ U1/4 ⊆ C1/4 ⊆ U1/2 ⊆ C1/2 ⊆ U3/4 ⊆ C3/4 ⊆ U1.
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This process may be iterated indefinitely to obtain a collection of open sets

U = {Ur : r ∈ Q ∩ (0, 1]}

and a collection of closed sets

C = {Cr : r ∈ Q ∩ (0, 1]}

such that if r, s ∈ Q and r < s,

Ur ⊆ Cr ⊆ Us ⊆ Cs.

We the define f : X → [0, 1] by

f(x) =

{
inf{r ∈ Q ∩ (0, 1] : x ∈ Ur} x ∈ U1

1 x ∈ B

We observe that f(B) = {1} by definition and f(A) = {0} since the sequence
(1/n) ⊆ Q ∩ (0, 1]. It only remains to show that f is continuous.

We note that because

B = {[0, α), (α, 1] : α ∈ (0, 1)}

is a subbase for the metric topology on [0, 1], we need only show that f−1((α, 1])
and f−1([0, α)) are open in X for any α ∈ [0, 1]. We claim that

f−1((α, 1]) =
⋃
r>α

(X r Cr).

Suppose x ∈ f−1((α, 1]). Thus α < f(x). Indeed, this means we may11 find a dyadic
rational s such that α < s < f(x). Indeed, we may find a second dyadic rational r
such that

α < r < s < f(x).

From this, one obtains x /∈ Us

r < f(x) = inf{r ∈ Q ∩ [0, 1] : x ∈ Ur}

implies s /∈ {r ∈ Q ∩ [0, 1] : x ∈ Ur}. It follows that x /∈ Cr. Therefore x ∈ X r Cr
with r > α. We obtain

f−1((α, 1]) ⊆
⋃
r>α

(X r Cr).

11This follows from the dyadic rationals being dense in Q.
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To check the other containment, let x ∈ X r Cr for some dyadic r > α. We have
x /∈ Ur. Then f(x) ≥ r. This demonstrates the other containment and we obtain

f−1((α, 1]) =
⋃
r>α

(X r Cr).

This is a union of open sets and thus is open.

Next, we claim that

f−1([0, α)) =
⋃
r<α

Ur.

Suppose x ∈ f−1([0, α)). Then f(x) < α. There is then dyadic r such that f(x) <
r < α. This means x ∈ Ur. These steps run backwards to prove

f−1([0, α)) =
⋃
r<α

Ur.

Again, this is open as a union of open sets.

We know then that f is continuous and conclude the proof. QED

Proposition C.1.7. Compact Hausdorff topological spaces are normal.

Proof. Let X be a compact and Hausdorff topological space with closed, disjoint
subsets A and B. Note that A and B are compact. For each a ∈ A and b ∈ B find
disjoint open sets Ua,b 3 a and Va,b 3 b. For each b ∈ B, the collection Ub = {Ua,b :
a ∈ A} is an open cover for A and thus admits a finite subcover U ′b. Define

Vb =
⋂
{Va,b : a ∈ A and Va,b ∈ U ′b}

which is an open neighborhood of b and disjoint from each element of U ′b. We have
that V = {Vb : b ∈ B} is an open cover of B and thus admits finite subcover V ′.
Define

U =
⋂{⋃

U ′b : Vb ∈ V ′
}
.

We see that A ⊆ U which is open. We also have that B ⊆ V where V =
⋃
V ′ which

is open. We last note that V ∩ U = ∅. Therefore, X is normal. QED

Lemma C.1.8. If X is a normal space with finite open cover {Ui}ni=1 then there exists an
finite open cover {Vi}ni=1 so that for each i = 1, ..., n we have

Vi ⊆ cl(Vi) ⊆ Ui.
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Proof. If n = 1, this follows from Theorem C.1.5. Suppose n = 2. That is, we have
an open cover of the form {U1, U2}. We have that X r U1 and X r U2 are disjoint
and closed. By normality, we have disjoint open sets V1, V

′ so that XrU2 ⊆ V1 and
X r U1 ⊆ V ′. We observe that

V1 ⊆ X r V ′ ⊆ U1

from which it follows from closedness of X r V ′ that

V1 ⊆ cl(V1) ⊆ U1.

Observe that {V1, U2} is still an open cover of X . Thus, we may repeat the above
process to obtain open V2 ⊆ U2 with {V1, V2} an open cover of X and

V2 ⊆ cl(V2) ⊆ U2.

Now, suppose n > 2. Consider the cover {U1,
⋃n
k=2 Uk}. Repeat the above process

to find open V1 ⊆ U1 with the desired properties. Then split off each other Uk in
turn and do the same. QED

Definition C.1.9. If X is a topological space, a partition of unity on X is a collection
{ui}i∈I of continuous functions ui : X → [0, 1] so that

1. For each x ∈ X there are only finitely many i ∈ I so that ui(x) 6= 0;

2. For each x ∈ X we have
∑

i∈I ui(x) = 1.

Further, if {U}i∈I is an open cover of X and for each i ∈ I we have supp{ui} ⊆ Ui,
then we say the partition is subordinate to the open cover.

Proposition C.1.10. IfX is a compact, Hausdorff topological space and {Ui}i∈I is an open
cover of X , then there exists a partition of unity on X which is subordinate to {Ui}i∈I .

Proof. Let J ⊆ I be a finite subset of I so that {Uj}j∈J is an open cover of X . Since
compact, Hausdorff spaces are normal, we may find covers {Wj}j∈J and {Vj} so
that

Wj ⊆ cl(Wj) ⊆ Vj ⊆ cl(Vj) ⊆ Uj

for each j ∈ J . For each j ∈ J we have disjoint closed sets cl(Wj) and XrVj . Since
X is normal, Urysohn’s lemma guarantees a continuous function hj : X → [0, 1]
which takes 0 on cl(Wj) and 1 on X r Vj . We observe that h−1

j ({0}) ⊆ Vj and thus
supp(hj) ⊆ cl(Vj) ⊆ Uj . For each i ∈ I r J define hi : X → [0, 1] to be constantly
zero. Define N : X → [0, 1] by

N(x) =
∑
i∈I

hi(x).

Observe that this is well defined since at most finitely many of the hi may be non-
zero and that N(x) 6= 0 for all x ∈ X . Further, N is continuous as a sum of con-
tinuous functions all but finitely many of which are uniquely 0. We next define for
each i ∈ I the continuous function ui : X → [0, 1] by ui = hi

N
. We finally observe

that {ui}i∈I is a partition of unity subordinate to {Ui}i∈I . QED
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C.2 The Stone-C̆ech Compactification

This section proves the existence of the Stone-C̆ech Compactification and estab-
lishes some of its basic properties. For the most part, these results here are more
detailed versions of the discussion of the Stone-C̆ech compactification in [BBT20].

Definition C.2.1. Let CHAUS denote the category of compact Hausdorff topologi-
cal spaces and continuous maps. There is an inclusion functor U : CHAUS → TOP.
This functor has a left adjoint β : TOP → CHAUS called the Stone-C̆ech compactifica-
tion.

It is not immediately clear that U has a left adjoint. The following results will set
up an existence proof for β by means of Theorem A.4.6 - Freyd’s adjoint functor
theorem.

Lemma C.2.2. The category of topological spaces is complete.

Proof. By Theorem A.3.10 it suffices to show that TOP has all (small) products and
all equalizers. Certainly TOP is closed under products. Additionally, it is not hard
to verify that the equalizer of a diagram

X Y

f

g

in TOP is {x ∈ X : f(x) = g(x)}with the subspace topology. QED

Corollary C.2.3. The category of compact Hausdorff topological spaces is complete.

Proof. Since products of compact Hausdorff spaces are compact and Hausdorff, we
have that CHAUS is closed under (small) products. Further, if

X Y

f

g

is a diagram in CHAUS, one has that {x ∈ X : f(x) = g(x)} is closed in X and thus
compact and Hausdorff when equipped with the subspace topology. So CHAUS
has all (small) products and equalizes and is therefore complete. QED

Corollary C.2.4. The inclusion functor U : CHAUS → TOP is continuous.

Lemma C.2.5. The inclusion functor U : CHAUS → TOP satisfies the solution set condi-
tions layed out in Definition A.4.5.

Proof. Fix a topological space X . If K is compact and Hausdorff and f : X → K,
then cl(f(X)) is compact and Hausdorff. Further, we have

X K

cl(f(X))

f

f̂ i
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commutes when f̂ is the codomain restriction of f and i is the subset inclusion
map. Observe that since each element of cl(f(X)) can be witnessed by a distinct
converging filter, this has cardinality at most |P |where P = P(P(X)). Construct a
set A in the following way:

• Take all subsets of P .

• Determine all compact and Hausdorff topological spaces whose underlying
set is a subset of P .

• Include each into A.

Define B to be the collection of all continuous functions from X into elements of
A. With these constructions, there will be Z ∈ A with Z ∼= cl(f(X)). Using this
homeomorphism, there will be h : X → Z and some continuous j : Z → K so that

X K

Z

f

h j

commutes. These are the desired solution set conditions. QED

Theorem C.2.6. The inclusion functor U : CHAUS → TOP has a left adjoint.

Proof. With the preceding lemmas, we safely invoke the Freyd adjoint functor the-
orem. QED

Proposition C.2.7. For every topological space X , there is a map ηX : X → βX so that
for all compact, Hausdorff K and continuous f : X → K there is a unique continuous
map f̂ : βX → K so that

X K

βX

f

ηX f̂

commutes.

Proof. Fix a topological space X . For all compact, Hausdorff space Y , we have an
isomorphism

hX,Y : C(βX, Y )→ C(X, Y )

which is natural in Y . Define ηX : X → βX by ηX = hX,βX(idβX). Suppose K is
some compact Hausdorff space and f : X → Y is continuous. Define f̂ : βX → K

by f̂ = h−1
X,K(f). Naturality in Y tells us that
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C(βX, βX) C(βX,K)

C(X, βX) C(X,K)

hX,βX

C(βX,f̂)

hX,K

C(X,f̂)

commutes. If we trace idβX through both both upper and lower halves of the
diagram, we get

f̂ ◦ ηX = hX,K(f̂) = f

which is exactly what it means for the desired diagram to commute.

It is left to show that f̂ is unique. Suppose there is a continuous map g making

X K

βX

f

ηX g

commutes. We then have by naturality that

C(βX, βX) C(βX,K)

C(X, βX) C(X,K)

hX,βX

C(βX,g)

hX,K

C(X,g)

commutes. Again, this means

hX,K(g) = g ◦ ηX = f.

Since hX,K is a bijection, g = f̂ so that f̂ is indeed unique. QED

Definition C.2.8. A topological space X is called Tychonoff when it is Hausdorff
and for every x ∈ X and closed A ⊆ X r {x} there is a continuous f : X → [0, 1]
so that f(x) = 1 and f(A) = {0}.

Proposition C.2.9. Each Hausdorff normal topological space is Tychonoff.

Proof. Suppose X is Hausdorff and normal. We need only be able to separate
closed sets from points by continuous functions. However, since X is Hausdorff,
points are closed and we may merely invoke Urysohn’s lemma. QED

Proposition C.2.10. If X is a Tychonoff space, then ηX : X → βX is an embedding into
a dense subset of βX .

Proof. We first prove that ηX is an injection. Suppose, x, y ∈ X with x 6= y. Then
since X is Tychonoff, there is a continuous f : X → [0, 1] so that f(x) 6= f(y). We
factor this through βX to obtain f̂ : βX → [0, 1] with f = f̂ηX . We immediately
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see that ηX(x) 6= ηX(y) as otherwise f(x) = f(y). Thus, ηX is an injection.

We now prove that ηX is an embedding. Suppose there is some net α in X with
ηX(α) → ηX(x) for some x ∈ X . We aim to show α → x. Suppose not. We may
identify and open neighborhood of X and a cofinal subset I ⊆ dom(α) so that
α(I) ∩ U = ∅. It follows that x /∈ cl(α(I)). There is thus a continuous function
f : X → [0, 1] so that f(x) = 1 and f(α(I)) = {0}. We factor this through βX to
obtain f̂ : βX → [0, 1] with f = f̂ηX . Since ηX(α) → ηX(x) and I ⊆ dom(α) is
cofinal, we have that ηX(α)|I → ηX(x). But then f̂ηX(α)|I → 1 where this net takes
constant value zero. This is impossible, so α → x. Therefore, ηX has continuous
inverse out of its image.

We lastly prove that ηX(X) is dense in βX . Suppose to contradiction that there
is some z ∈ βX with z /∈ cl(ηX(X)). Since βX is compact and Hausdorff, it is nor-
mal by Proposition C.1.7. We may thus find a continuous function g : βX → [0, 1]
so that g(z) = 1 and g(cl(ηX(X)) = 0. For each r ∈ (0, 1], we have that rg is con-
tinuous. Let f : X → [0, 1] be the constant map with value 0. Note that for any
r ∈ (0, 1) that

X [0, 1]

βX

f

ηX rg

commutes. This contradicts the fact that f factors through βX uniquely. Therefore,
ηX(X) is dense in βX . QED

Proposition C.2.11. Any subspace of a compact Hausdorff space is Tychonoff.

Proof. Let X be a compact Hausdorff space with subspace Y . Let x ∈ Y and S ⊆
Y r {x} closed. We then have some closed subset C of X so that S = Y ∩ C.
Necessarily, x /∈ C. Since X is compact Hausdorff, X is normal and {x} is closed.
By Urysohn’s lemma, we may find a continuous f : X → [0, 1] so that f(x) = 1 and
f(C) = {0}. The restriction f |Y witnesses that Y is Tychonoff. QED

C.3 A Tietze-like Extension Result

Lemma C.3.1. If X is a Tychonoff space and K,C ⊆ X are disjoint and compact and
closed respectively, then there exists a continuous function f : X → [0, 1] so that f(K) =
{0} and f(C) = {1}.

Proof. Since X is Tychonoff, we may find for each x ∈ K a continuous function
fx : X → [0, 1] so that fx(x) = 0 and fx(C) = {1}. For each x ∈ X define an open
set Ux = f−1

x ([0, 1/2)). The collection {Ux : x ∈ X} is then an open cover of K. By
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compactness, we may find x1, ..., xn ∈ X so that

K ⊆
n⋃
i=1

Uxi .

Define continuous h : X → [0, 1] by

h(x) = min{fx1(x), ..., fxn(x)}.

We have that h(x) < 1
2

for each x ∈ K since the Ux1 , ..., Uxn cover K. We then
compose h with some continuous r : [0, 1] → [0, 1] so that r([0, 1/2]) = {0} and
r(1) = 1. Thus, f = r ◦ h is a continuous function f : X → [0, 1] so that f(K) = {0}
and f(C) = {1}. QED

Theorem C.3.2. SupposeX is a Tychonoff space andK ⊆ X is compact. Any continuous
function f : K → R may be extended to X .

Proof. 12 This proof is incorrect. See annotation in hard copy or Math 5200 home-
work 5. We have that K is compact and f continuous. We therefore have that
|f | < M for some M > 0. We will proceed to recursively construct a sequence of
continuous functions gn : X → R so that for each n ∈ N,

(i) for each x ∈ K, we have
∣∣f(x)−

∑n
k=0 gk(x)

∣∣ ≤ 2nM
3n

;

(ii) for each x ∈ X rK we have |gn(x)| < 2n−1M
3n

For the base case, let g0 be the constant map at 0. Suppose that we have constructed
g0, ..., gn. Define closed subsets of K by

A = (f − gn)−1

(
−∞,−2nM

3n+1

]

B = (f − gn)−1

[
2nM

3n+1
,∞
)
.

We note that A and B are compact as they are closed subsets of a compact space.
Using the preceding lemma, find

gn+1 : X →
[
− 2nM

3n+1
,
2nM

3n+1

]
so that gn+1(x) = − 2nM

3n+1 for x ∈ A and gn+1(x) = 2nM
3n+1 for x ∈ B. It is then simple to

verify that (i) and (ii) hold.

12This proof method here is essentially the same as that used to prove the Tietze Extension The-
orem in [Arm83]. Here, the condition that K is compact, instead of merely closed, accounts for the
weakening of X from normal to Tychonoff.
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Lastly, define f̂ : X → R by

f̂(x) =
∞∑
k=0

gn(x).

Condition (ii) tells us that this series converges uniformly by the Weierstrass M-
test, and thus f̂ is continuous. Condition (i) guarantees that f and f̂ agree on
K. QED

Corollary C.3.3. Suppose X is a Tychonoff space with compact subsets K. Any continu-
ous function f : K → C may be extended to X .

Proof. One need merely extend the real and imaginary parts of f independently.
QED





Appendix D

Topological Vector Spaces

This appendix contains results on vector spaces and topological vector spaces sup-
porting definitions and results in Chapter 4. This appendix mainly reproduces
material from [NB10].

D.1 Vector Space Preliminaries

Definition D.1.1. A subset A of a vector space V is called convex when λv + (1 −
λ)w ∈ A for all v, w ∈ A and λ ∈ [0, 1].

Proposition D.1.2. Let V and W are vector spaces.

(a) If A is a collection of convex subsets of V , then
⋂
A is convex.

(b) If α ∈ K and A ⊆ V is convex, then αA is convex.

(c) If A,B ⊆ V are convex, then so is A+B.

(d) If f : V → W is a linear map and A ⊆ V is convex, then f(A) is convex.

Proof. We consider each sub-proposition in turn.

(a) Suppose A is a collection of convex subsets of V . Let v, w ∈
⋂
A and λ ∈ [0, 1].

Then for each A ∈ A, we have λv + (1− λ)w ∈ A so that λv + (1− λ)w ∈
⋂
A.

Thus,
⋂
A is convex.

(b) Suppose α ∈ K and A ⊆ V is convex. Let v, w ∈ A and λ ∈ [0, 1]. Then
λv + (1− λ)w ∈ A so that

α(λv + (1− λ)w) = λ(αv) + (1− λ)(αw) ∈ αA

so that αA is convex.

(c) Let v1, w1 ∈ A and v2, w2 ∈ B. Fix λ ∈ [0, 1]. We have that

λ(v1 + v2) + (1− λ)(w1 + w2) = λv1 + (1− λ)w1 + λv2 + (1− λ)w2 ∈ A+B

from convexity of A+B.
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(d) Suppose f : V → W is a linear map and A ⊆ V is convex. Let x, y ∈ f(A) and
λ ∈ [0, 1]. There are then v, w ∈ A so that f(v) = x and f(w) = y. We then have

λx+ (1− λ)y = λf(v) + (1− λ)f(w)

= f(λv + (1− λ)w)

∈ f(A)

since A is convex. We conclude that f(A) is convex.

QED

Definition D.1.3. Given a vector space V and subset A of V , we define the convex
hull of A to be the smallest convex set containing A and denote this by co(A). That
is, if C denotes the collection of convex sets containing A,

co(A) =
⋂
C.

Equivalently, one may verify that

co(A) =

{ n∑
i=1

λiai | a1, ..., an ∈ A and λ1, ..., λn ∈ R≥0 and
n∑
i=1

λi = 1

}
.

Proposition D.1.4. Let V be a vector space.

1. If A ⊆ B, then co(A) ⊆ co(B).

2. If A is a collection of subsets of V , then co

(⋂
A
)
⊆
⋂
A∈A co(A).

Proof. Suppose A ⊆ B ⊆ V . Any convex subset of V containing B contains A.
Thus, A ⊆ co(B). Since co(B) is convex, co(A) ⊆ co(B).

Suppose A is a collection of subsets of V . By analogous reasoning to the above,
we have

⋂
A ⊆

⋂
A∈A co(A) which is convex. The desired result follows. QED

Proposition D.1.5. If f : V → W is a linear mapping of vector spaces and A ⊆ V , the
co(f(A)) = f(co(A)).

Proof. Since co(A) is convex, and linear maps preserve convexity, f(co(A)) is con-
vex and contains f(A). Thus, co(f(A)) ⊆ f(co(A)). On the other hand, if v ∈
f(co(A)), then there are a1, ..., an ∈ A and λ1, ..., λn ∈ R≥0 so that

∑n
i=1 λi = 1 and

v =
∑n

i=1 λif(ai). Thus, v ∈ co(f(A)). We conclude that f(co(A)) ⊆ co(f(A)) and
f(co(A)) = co(f(A)) as desired. QED

Proposition D.1.6. If A and B are subsets of a vector space V , then co(A) + co(B) =
co(A+B).
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Proof. Since A co(A) and co(B) are convex and contain A and B, we have that
co(A) + co(B) is convex and co(A) + co(B) ⊇ co(A+B).

For the other containment, a generic element of co(A+B) is

n∑
i=1

λi(ai + bi)

where each ai ∈ A and bi ∈ B and λi ∈ [0, 1] so that
∑n

i=1 λi = 1. Then,

n∑
i=1

λi(ai + bi) =
n∑
i=1

λiai +
n∑
i=1

λibi ∈ co(A) + co(B)

as desired. QED

Proposition D.1.7. If U, V,W are vector spaces, B : U × V → W is a bilinear map, and
M ⊆ U and N ⊆ W , then

co(B(M ×N)) ⊇ B(co(M)×N).

Proof. Suppose w ∈ B(co(M) × N). There is then some v ∈ N and u1, ..., un ∈ M
and λ1, ..., λn ∈ R≥0 so that

∑n
i=1 λi = 1 and

w = B

( n∑
i=1

λiui, v

)
=

n∑
i=1

λiB(ui, v).

Thus, w ∈ co(B(M ×N)). QED

Definition D.1.8. If V is a vector space, a subsetA of V is called balanced whenever,
λA ⊆ A for all λ ∈ K with |λ| ≤ 1.

Proposition D.1.9. The convex hull of a balanced set is balanced.

Proof. Suppose A ⊆ V is balanced. Let v ∈ co(A). Then v =
∑n

i=1 λiai for some
a1, ..., an ∈ A and λ1, ..., λn ∈ R≥0 so that

∑n
i=1 λi = 1. Let λ ∈ K with |λ| ≤ 1. We

then have that λai ∈ A for each i = 1, ..., n. Thus,

λv =
n∑
i=1

λi(λai) ∈ co(A)

so that co(A) is balanced. QED

Definition D.1.10. If V is a vector space, a subset A of V is called absolutely convex
whenever A is both convex and balanced.



174 Appendix D. Topological Vector Spaces

Definition D.1.11. Given a vector space V and subsetA of V , we define the absolute
convex hull of A to be the smallest absolutely convex set containing A and denote
this by Γ(A). This may be explicitly given as

Γ(A) =

{ n∑
i=1

λiai | a1, ..., an ∈ A and λ1, ..., λn ∈ K and
n∑
i=1

|λi| ≤ 1

}
.

Definition D.1.12. A subset A of a vector space V is called absorbent when for
every v ∈ V there is R > 0 so that whenever λ ∈ K with |λ| ≥ R we have v ∈ λA.
Equivalently, there is S > 0 so that what |λ| ≤ S we have λv ∈ A.

Definition D.1.13. If V is a vector space, a functional f : V → R is called sublinear
when for all v, w ∈ V and λ ∈ R≥0

1. f(λv) = λf(v);

2. f(v + w) ≤ f(v) + f(w).

Definition D.1.14. If V is a vector space, a map p : V → R is called a seminorm
when for all v, w ∈ V and λ ∈ K

1. p(v) ≥ 0;

2. p(λv) = |λ|p(v);

3. p(v + w) ≤ p(v) + p(w).

Notation D.1.15. If V is a vector space, we denote the dual of V by L(V ).

Definition D.1.16. If V is a vector space and A ⊆ V , define A⊥ = {ϕ ∈ L(V ) :
ϕ(A) = {0}}. Similarly, if M ⊆ L(V ), define M⊥ = {v ∈ V : ϕ(v) = 0 for all ϕ ∈
M}.

D.2 Topological Vector Spaces

Definition D.2.1. A topological vector space or TVS is a vector space V over K equipped
with a topology so that scalar multiplication · : K × V → V and vector addition
+ : V × V → V are continuous.

Proposition D.2.2. If V is a TVS and U is a neighborhood of 0, then U is absorbent.

Proof. Let v ∈ V . Consider R>0 with the reverse of the usual order. Let

D = {(r, λ) : r ∈ R>0 and λ ∈ K with |λ| = r}

ordered by the first coordinate. Let δ : D → K by δ(r, λ) = λ. Certainly δ → 0 in
K. We thus have that δv → 0 in V . Thus, δv ∈ev U . This means exactly that there is
r > 0 so that whenever |λ| ≤ r we have λv ∈ U . So U is absorbent. QED
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Definition D.2.3. If V is a vector space and A ⊆ V , define pA : V → [0,∞], the
Minkowski functional induced by A, by

pA(v) = inf{r > 0 : v ∈ rA}.

with the convention that inf ∅ =∞.

Proposition D.2.4. If V is a TVS and A ⊆ V is an absolutely convex neighborhood of 0,
then pA : V → R is a seminorm.

Proof. Since A is a neighborhood of 0, we know that A is absorbent. Thus, pA takes
only real values.

Suppose v ∈ V and λ ∈ K. If λ = 0, then certainly pA(λv) = 0. Else, suppose
|λ|pA(v) < t. We then have that |pA(v)| < t/|λ|. Thus, we have v ∈ t/|λ|A and
|λ|v ∈ tA. There is some scalar z with |z| = 1 so that |λ|z = λ. We then obtain
λv ∈ tA since A is balanced. Thus, pA(λv) ≤ |λ|pA(v). Next, suppose t > 0 is such
that λv ∈ tA. We then have that v ∈ t/λA = t/|λ|A. We then have that pA(v) ≤ t/|λ|
so that |λ|pA(v) ≤ t. Therefore, |λ|pA(v) ≤ p(λv) as desired for pA to be a seminorm.

Next, suppose v, w ∈ V . For every ε > 0 we may find λ, µ > 0 so that λ ≤ pA(v) + ε
and v ∈ λA and µ ≤ pA(w) + ε and w ∈ µA. We have that

λ

λ+ µ
A+

µ

λ+ µ
A ⊆ A

by convexity of A. Thus,

λA+ µA ⊆ (λ+ µ)A.

We obtain w + v ∈ (λ+ µ)A. Therefore

pA(v + w) ≤ pA(v) + pA(w) + 2ε.

This holds for all ε, so pA(v + w) ≤ pA(v) + pA(w).

We have now shown that pA is a seminorm. QED

Remark D.2.5. If we relax the hypotheses toA being merely a convex neighborhood
of 0, the only change is that pA is a non-negative sublinear functional.

Lemma D.2.6. If f : V → R is a sublinear functional on a TVS V , then f is continuous
if it is continuous at 0.

Proof. Suppose f is continuous at 0. Let v ∈ V and α : A → V be a net in V
converging to v. We have that α − v → 0 and since f is continuous at 0, we have
f(α− v)→ 0. For any a ∈ A,

f(αa)− f(v) = f(αa − v + v)− f(v)

≤ f(αa − v)
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and

f(v)− f(αa) = f(v − αa + αa)− f(αa)

≤ f(v − αa)
= f(αa − v)

so that |f(v) − f(αa)| ≤ f(αa − v). Since f(αa − v) → 0, we have f(α) → f(v).
Therefore, f is continuous on V . QED

Proposition D.2.7. If V is a TVS and A ⊆ V is a convex neighborhood of 0, then pA :
V → R is continuous.

Proof. We have that pA does not take∞ as a value since A is absorbent. Since pA is
sublinear, to show pA is continuous we need only show it is continuous at 0. Let
α be a net in V with α → 0. Fix ε > 0. We have that ε/2A is open. Therefore,
α ∈ev ε/2A. If v ∈ ε/2A, then we have that pA(v) ≤ ε/2. Therefore, pA(α) ∈ev

(−ε, ε). Thus, pA(α)→ 0 and pA is continuous at 0 and which means it is continuous
everywhere. QED

D.3 Locally Convex Spaces

Definition D.3.1. A TVS is called locally convex when 0 has a neighborhood basis
of convex sets.

Proposition D.3.2. If V is a locally convex topological vector space then there is a basis
of neighborhoods containing 0 consisting entirely of absolutely convex sets.

Proof. Let U be a neighborhood of 0. Without loss of generality, we may assume
U is convex. Let m : K × V → V be scalar multiplication. Since V is a TVS, we
have that m is continuous and m−1(U) is open. We thus have some open D 3 0 in
K and A 3 0 in V so that D×A ⊆ m−1(U). Without loss of generality, we may take
D = δD for some δ < 1. We then note that

m(δD× A) =
⋃

0<|ε|≤|δ|

εA

so thatm(δD×A) is open. Further, it is then clear thatm(δD×A) is balanced. Lastly,
we have that co(m(δD×A)) ⊆ U sinceU is convex. As the convex hull of a balanced
set is balanced, we have that U contains a convex and balanced neighborhood of
0. It follows that there is a basis of neighborhoods containing 0 consisting entirely
of absolutely convex sets. QED

Proposition D.3.3. Suppose V is a locally convex TVS and f : V → K is a linear
functional. There is a continuous seminorm p : V → R so that |f | ≤ p if and only if f is
continuous.
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Proof. Suppose such continuous seminorm p exists. Let α be a net in V converging
to 0. We have by continuity that p(α)→ 0 in R. It follows that |f(α)| → 0 in R and
thus that f(α) → 0 in K. Therefore, f is continuous at 0 and therefore continuous
on all of V .

Conversely, suppose that f is continuous. Then |f | is the desired continuous semi-
norm. QED

Lemma D.3.4. If A and B are absolutely convex, then co(A ∪B) is absolutely convex.

Proof. This is certainly convex. Now, let λ ∈ K with |λ| ≤ 1. If v ∈ co(A ∪ B),
then v = γa + (1 − γ)b for some γ ∈ [0, 1] and a ∈ A and b ∈ B since A and B
are absolutely convex. We than have that λv = γ(λa) + (1 − γ)(λb). Since A and
B are absolutely convex, this is within co(A ∪ B). Thus, co(A ∪ B) is absolutely
convex. QED

Proposition D.3.5. If V is a locally convex TVS and M a subspace of V , then any con-
tinuous seminorm p : M → R may be extended to V .

Proof. Let U = {m ∈ M : p(m) < 1} which is open in M and absolutely convex.
Since M has the subspace topology, there is open W ′′ ⊆ V so that U = W ′′∩M . We
have thatW ′′ contains 0, so there exists a neighborhoodW ′ of 0 which is absolutely
convex and contained in W ′′. We then have that U ⊇M ∩W ′. Let W = co(U ∪W ′).
We see that U ⊆M ∩W by its definition.

Now, suppose v ∈ M ∩ W . Since U and W ′ are individually absolutely convex,
we have some λ ∈ [0, 1] and u ∈ U and w′ ∈ W so that v = λu + (1 − λ)w′. Thus,
(1− λ)w′ = v − λu ∈ M . It then follows that λ = 1 or w′ ∈ U . In both cases, v ∈ U .
Therefore, U = M ∩W

Since U and W ′ are absolutely convex, we have that W is absolutely convex. This
is absolutely convex neighborhood of 0 and is thus absorbent. We then consider
the Minkowski functional pW : V → R by pW (v) = inf{r > 0 : v ∈ fA} which
is a continuous seminorm. We need only show that pW |M = p. We see that since
U = M ∩W that if m ∈M ,

pW (m) = inf{r > 0 : m ∈ rU} = inf{r > 0 : p(m) < r} = p(m)

as desired. QED

D.4 The Hahn-Banach Theorem

Lemma D.4.1 (One Dimensional Extension). Suppose V is a vector space over R with
subspace M . If there exists v ∈ V rM and a functional f : M → R and a sublinear
functional p : V → R so that f ≤ p on M , then there exists an extension functional f̂ of
f with f̂ : M ⊕ Rv → R and f̂ ≤ p on M ⊕ Rv.
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Proof. For each δ ∈ R, define f̂δ : M ⊕ Rv → R by f̂δ(m + rv) = f(m) + rδ for all
m ∈ M and r ∈ R. Each is clearly linear and an extension of f . We claim there is
some δ ∈ R making f̂δ ≤ p.

Consider that for any x, y ∈M , we have

f(x) + f(y) = f(x+ y)

≤ p(x+ y)

= p(x− v + y + v)

≤ p(x− v) + p(y + v)

From this, we have that for any x, y ∈M

f(x)− p(x− v) ≤ p(y + v)− f(y).

We then have that for any y ∈M ,

sup
x∈M

f(x)− p(x− v) ≤ p(y + v)− f(y)

and thus

sup
x∈M

f(x)− p(x− v) ≤ inf
y∈M

p(y + v)− f(y)

We then choose δ so that

sup
x∈M

f(x)− p(x− v) ≤ δ ≤ inf
y∈M

p(y + v)− f(y)

If r > 0 and m ∈M , we then have that

rδ ≤ p(m+ rv)− f(m)

so that f̂(m+rv) ≤ p(m+rv). If r = 0 then f̂(m+rv) ≤ p(m+rv) since f(m) ≤ p(m).
If r < 0, then

−rδ ≥ f(m)− p(m+ rv)

so that f̂(m+ rv) ≤ p(m+ rv). We conclude that f̂ ≤ p as desired. QED

Theorem D.4.2 (Hahn-Banach, Real Case). Let V be a vector space over R with sub-
space M . If f : M → R is some functional and p : V → R is some sublinear functional so
that f ≤ p, then there exists a linear functional f̂ : V → R extending f such that f̂ ≤ p.

Proof. Define

P = {ϕ : A→ R |M ⊆ A ⊆ V ∧ A a subspace ∧ ϕ linear ∧ ϕ|M = f ∧ ϕ ≤ p}
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Given ϕ, ψ ∈ P , say that ϕ ≤ ψ when the domain of ϕ is a subset of the domain
of ψ and ψ restricts to ϕ. This makes P into a poset. Suppose C ⊆ P is a chain.
Let Ω be the union of the domains of elements of C. This is a subspace of V since
it is a union of nested subspaces. Define ω : Ω → R by ω(x) = ϕ(x) where ϕ is
any element of C whose domain contains x. This is well defined and linear since
successive elements of C are linear and extend each other. By the same reasoning,
ω ≤ p. By Zorn’s lemma, P has a maximal element. Call it f̂ : A → R. If A 6= V ,
then by the one dimensional extension lemma, f̂ is not maximal. So A = V andf̂
is the desired extension of f . QED

Lemma D.4.3. If V is a vector space over C and f a functional on V with real part f1,
then for all v ∈ V ,

f(v) = f1(v)− if1(iv).

Proof. Let f2 denote the imaginary part of f . For any v ∈ V , we have that f(v) =
f1(v) + if2(v). Thus,

f(iv) = f1(iv) + if2(iv)

and since f is C-linear,

f(v) = f2(iv)− if1(iv).

By the uniqueness of real and imaginary parts, f2(v) = −f1(iv) for all v ∈ V . The
result follows. QED

Corollary D.4.4 (Hahn-Banach, Complex Case). Let V be a vector space over C with
subspace M . If f : M → C is some functional and p : V → R is some seminorm so that
|f | ≤ p, then there exists a linear functional f̂ : V → C extending f such that |f̂ | ≤ p.

Proof. Let f1 denote the real part of f . Since |f | ≤ p, we have that f1 ≤ p. We
view V as a real vector space and use the real version of Hahn-Banach to obtain an
R-linear extension f̂1 of f1 to V . We then set f̂(x) = f̂1(x)− if̂1(ix) for each x ∈ V .
By the preceding lemma, this does restrict to f onM . One may then verify that f̂ is
C-linear. It is then left to verify that |f̂ | ≤ p. Choose v ∈ V . Let α ∈ C with |α| = 1
so that αf(v) ∈ R. We obtain

|f̂(v)| = |αf̂(v)|
= |f̂(αv)|
= |f̂1(αv)|
≤ p(αv)

= |α|p(v)

= p(v)

as desired. QED
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Corollary D.4.5. If V is a locally convex TVS and M is a subspace of V , and f : M → K
is a continuous functional, then f has a continuous extension f̂ to V .

Proof. Since f is continuous on a subspace of V , we have a continuous seminorm
p : V → R so that |f | ≤ p. By Hahn-Banach, we extend f to a linear f̂ : V → K so
that |f̂ | ≤ p. We thus have that f̂ is continuous. QED

Notation D.4.6. If V is a vector space and p : V → R is a sublinear functional, let
Vp = {v ∈ V : p(v) < 1}

Lemma D.4.7. If V is a vector space with sublinear functional p

1. Vp is convex;

2. If r > 0 then rVp = {v ∈ V : p(v) < r};

3. If w ∈ V then w + Vp = {v ∈ V : p(v − w) < 1}

Proposition D.4.8. If V is vector space over R and f is a non-trivial linear functional
and p : V → R is a non-negative sublinear functional, then

1. f ≤ p if and only if f−1({1}) ∩ Vp 6= 0;

2. If V is a TVS, p is continuous, and f ≤ p then f is continuous.

Proof. (1) is a straightforward double inclusion and (2) is not significantly different
from the case wherein p is a seminorm; one need only check that |f | ≤ p. QED

Proposition D.4.9. If V is a TVS and p is a sublinear functional of V , then

1. p(v)− p(w) ≤ p(v − w) for all v, w ∈ V ;

2. If p is non-negative, then p is continuous iff Vp is open;

3. If U is an open convex neighborhood of 0, then the Minkowski functional pU is a
non-negative, continuous, sublinear functional and U = VpU ;

4. The open convex subsets of V are precisely those of the form v + Vp for v ∈ V and p
a non-negative, continuous, sublinear functional.

Proof. (1) This follows from

p(v) = p(v − w + w) ≤ p(v − w) + p(w).

(2) This follows from the fact that Vp is open iff p is continuous at 0. Note that for
any ε > 0 we have p−1(−ε, ε) = εVp since p is non-negative.

(3) Non-negativity is clear. That pU is sublinear follows the fact that U is a convex
balanced open neighborhood of 0. Suppose v ∈ VpU . We then have that pU(v) < 1.
It follows that for some 0 < λ < 1 we have v ∈ λU ⊆ U . Thus, v ∈ U . Now,
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suppose that v ∈ U . Let δ : N → K by δn = 1 + 1/n. By continuity of scalar mul-
tiplication, δv → v. We have that δv ∈ev U . Thus, there is 1 < t so that tv ∈ U .
We then have that v ∈ (1/t)U with 1/t < 1. Therefore, pU(v) < 1 and v ∈ VpU . We
conclude that U = VpU . Since U is open, we have that pU is continuous.

(4) Just translate convex open sets to 0 and apply part (3) and translate back. QED

Definition D.4.10. If V is a vector space, H ⊆ V is called a hyperplane when there
exists a non-trivial functional f : V → K and scalar λ ∈ K andH = {v ∈ V : f(v) =
λ}]. Such a hyperplane is denoted by [f = λ].

Remark D.4.11. A hyperplane if closed if and only if its defining function is contin-
uous.

Theorem D.4.12 (Hahn-Banach Geometric Form, Real Case). Let V be a real TVS
with M ⊆ V a subspace. If U ⊆ V is open and convex and M ∩ U = ∅, then there is a
closed hyperplane H ⊇M so that H ∩ U = ∅.

Proof. Since G is open and convex, we find z ∈ V and non-negative sublinear
p : V → R so that U = z + Vp. We notice that now we have

[
z + Vp

]
∩M = ∅.

Define f : M ⊕ Rz → R by f(m + az) = −a for some and m ∈ M and a ∈ R.
We claim that f ≤ p on M ⊕ Rz. Suppose otherwise, that is there is some a ∈ R
and m ∈ M so that p(m + az) < −a. Since p is non-negative, it must be that −a is
positive. We thus have that p(m− z) < 1. But then m ∈ z+ Vp which is impossible.
We conclude that f ≤ p. We may then extend f to V so that the extension f̂ ≤ p. It
follows that f̂ : V → R is continuous.

Letting H = ker f̂ we have M ⊆ H as desired. Further, H is closed since f̂ is
continuous. It is left to show that H ∩ U 6= 0. Suppose v ∈ H . We then have

1 = f̂(−z)

= f̂(x− z)

≤ p(x− z)

so that x /∈ z + Vp = U . QED

Corollary D.4.13. If V is a TVS and U ⊆ V is convex, open and M ⊆ V is a subspace,
then there exists a continuous linear functional g : V → K so that g(M) = {0} and
0 /∈ g(U).

Proof. Viewing V as a real vector space, create f̂ : V → R as above. If K = R,
set g = f̂ and we are done. Otherwise, we then define g : V → C by g(v) =

f̂(v)− if̂(iv). We claim that g is continuous. We know it is linear, so it is enough to
show continuity at 0. Consider a net α→ 0 in V . By continuity of f̂ , addition, and
scalar multiplication, g(α) ∼ f̂(α) − if̂(iα) → 0. Thus, g is the desired continuous
functional. QED
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Proposition D.4.14. If V is a locally convex TVS and A ⊆ V is a subspace, then

(A⊥)⊥ = A.

Proof. We first will prove that A ⊆ (A⊥)⊥. If a ∈ A, there is a net α → a entirely
withinA. Then, if ϕ ∈ A⊥, we have that ϕ(α) = 0 the constant 0 net. Thus, ϕ(a) = 0
since ϕ is continuous.

Next, we will show that (A⊥)⊥ ⊆ A. Let x ∈ (A⊥)⊥. Suppose to contradiction
that x /∈ A. We may find an open convex neighborhood U of x with U ∩ A = ∅.
We may then find a continuous linear functional g : V → K so that g(A) = {0} and
0 /∈ g(U). We are done since g ∈ A⊥ and g(x) 6= 0 is a contradiction. QED
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